Simulation of propagation along a cylindrical bundle of cardiac tissue. II. Results of simulation

For pt.I see ibid., vol.37, no.9, p.850-60 (1990). Nonlinear membrane kinetics are introduced into the bidomain membrane and equal anisotropy ratios are assumed, permitting the transmembrane potential to be computed and its behavior examined at different depths in the bundle and for different values...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 37; no. 9; pp. 861 - 875
Main Authors Henriquez, C.S., Plonsey, R.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.1990
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For pt.I see ibid., vol.37, no.9, p.850-60 (1990). Nonlinear membrane kinetics are introduced into the bidomain membrane and equal anisotropy ratios are assumed, permitting the transmembrane potential to be computed and its behavior examined at different depths in the bundle and for different values of conductivity and bundle diameters. In contrast with single-fiber models, the bundle model reveals that the shape of the action potential is influenced by tissue resistivities. In addition, the steady-state activation wavefront through the cross section perpendicular to the long axis of the bundle is not planar and propagates with a velocity that lies between that of a single fiber in an unbounded volume and a single-fiber in a restricted extracellular space. In general, the bundle model is shown to be significantly better than the classical single fiber model in describing the behavior of real cardiac tissue.< >
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0018-9294
1558-2531
DOI:10.1109/10.58597