Green Synthesis of Silver Nanoparticles from Caralluma tuberculata Extract and its Antibacterial Activity

The plant extracts were applied for synthesis of Ag-nanoparticles and expected such biological processes benefit from advantages like eco-friendly, cost-effective, and safe for human use. Accordingly, polyphenol compounds and antioxidant properties of this understudy plant extract was initially qual...

Full description

Saved in:
Bibliographic Details
Published inJournal of inorganic and organometallic polymers and materials Vol. 30; no. 11; pp. 4606 - 4614
Main Authors Zarei, Zahra, Razmjoue, Damoun, Karimi, Javad
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The plant extracts were applied for synthesis of Ag-nanoparticles and expected such biological processes benefit from advantages like eco-friendly, cost-effective, and safe for human use. Accordingly, polyphenol compounds and antioxidant properties of this understudy plant extract was initially qualified and quantified by GC-Mass and subsequently its ability for silver nanoparticle (AgNP) biosynthesis was examined. Consequently, under study (ethanol) extract was exposed to various content of AgNO 3 solution over 0, 2.5, 5, 7.5, 10 and 15 mM for 24, 48, 72 and 96 h to search best operational conditions for AgNPs production, while sampling were done every 24 h monitoring initial absorption with UV–Vis spectroscopy. The peak with center at 460 nm emerged from surface plasmon resonance of AgNPs which is good indication of successful formation of AgNPs. The nanoparticles were characterized by DLS, SEM, TEM, XRD, and FTIR. Which reveal its spherical, shape and average diameter of 32 nm. Antioxidant activity tests showed that the half-maximal inhibitory concentration (IC50) in the C. tuberculata extract was 4.722 mg/ml. Antimicrobial activity of the AgNPs was tested by measurement of inhibition zone around discs modified with AgNPs in cultures of S. aureus , B. cereus , P. aeruginosa and E. coli .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1574-1443
1574-1451
DOI:10.1007/s10904-020-01586-7