Two-grid stabilized finite element methods with backtracking for the stationary Navier-Stokes equations
Based on local Gauss integral technique and backtracking technique, this paper presents and studies three kinds of two-grid stabilized finite element algorithms for the stationary Navier-Stokes equations. The proposed methods consist of deducing a coarse solution on the nonlinear system, updating th...
Saved in:
Published in | Advances in computational mathematics Vol. 50; no. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1019-7168 1572-9044 |
DOI | 10.1007/s10444-024-10180-1 |
Cover
Loading…
Summary: | Based on local Gauss integral technique and backtracking technique, this paper presents and studies three kinds of two-grid stabilized finite element algorithms for the stationary Navier-Stokes equations. The proposed methods consist of deducing a coarse solution on the nonlinear system, updating the solution on a fine mesh via three different methods, and solving a linear correction problem on the coarse mesh to obtain the final solution. The error estimates are derived for the solution approximated by the proposed algorithms. A series of numerical experiments are illustrated to test the applicability and efficiency of our proposed methods, and support the theoretical analysis results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-024-10180-1 |