Bicriterion Single Machine Scheduling with Resource Dependent Processing Times
A bicriterion problem of scheduling jobs on a single machine is studied. The processing time of each job is a linear decreasing function of the amount of a common discrete resource allocated to the job. A solution is specified by a sequence of the jobs and a resource allocation. The quality of a sol...
Saved in:
Published in | SIAM journal on optimization Vol. 8; no. 2; pp. 617 - 630 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.05.1998
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A bicriterion problem of scheduling jobs on a single machine is studied. The processing time of each job is a linear decreasing function of the amount of a common discrete resource allocated to the job. A solution is specified by a sequence of the jobs and a resource allocation. The quality of a solution is measured by two criteria, F1 and F2. The first criterion is the maximal or total (weighted) resource consumption, and the second criterion is a regular scheduling criterion depending on the job completion times. Both criteria have to be minimized. General schemes for the construction of the Pareto set and the Pareto set $\epsilon$-approximation are presented. Computational complexities of problems to minimize F1 subject to F_2\le K$ and to minimize F2 subject to $F_1\le K$, where K is any number, are studied for various functions F1 and F2. Algorithms for solving these problems and for the construction of the Pareto set and the Pareto set $\epsilon$-approximation for the corresponding bicriterion problems are presented. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/S1052623495288192 |