Power–Area-Optimized Approximate Multiplier Design for Image Fusion

In this paper, three approximate multiplier architectures are proposed: area-optimized approximate multiplier (AOM), power-optimized approximate multiplier (POM), and power- and area-optimized approximate multiplier (PAOM). These designs are implemented using speculative Han–Carlson adder and compre...

Full description

Saved in:
Bibliographic Details
Published inCircuits, systems, and signal processing Vol. 43; no. 4; pp. 2288 - 2319
Main Authors Thakur, Garima, Sohal, Harsh, Jain, Shruti
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, three approximate multiplier architectures are proposed: area-optimized approximate multiplier (AOM), power-optimized approximate multiplier (POM), and power- and area-optimized approximate multiplier (PAOM). These designs are implemented using speculative Han–Carlson adder and compressor-based multiplier blocks. Han–Carlson adder is used as the basic adder block in the final addition stage of all the three approximate multiplier designs. Different types of compressors (3:2, 4:2, 5:2, 6:2, 7:2, 8:2) are used for the implementation of the energy-efficient approximate multiplier blocks. All the simulations are performed on VIVADO design tool. Also, the designed multipliers are validated for image blending (an error-tolerant) application. The proposed power optimization approximate multiplier shows 0.86%, 10.54% PSNR improvement in comparison with area optimization approximate multiplier and power and area optimization approximate multiplier, respectively.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-023-02559-0