A posteriori error control for a discontinuous Galerkin approximation of a Keller-Segel model
We provide a posteriori error estimates for a discontinuous Galerkin scheme for the parabolic-elliptic Keller-Segel system in 2 or 3 space dimensions. The estimates are conditional in the sense that an a posteriori computable quantity needs to be small enough—which can be ensured by mesh refinement—...
Saved in:
Published in | Advances in computational mathematics Vol. 50; no. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We provide a posteriori error estimates for a discontinuous Galerkin scheme for the parabolic-elliptic Keller-Segel system in 2 or 3 space dimensions. The estimates are conditional in the sense that an a posteriori computable quantity needs to be small enough—which can be ensured by mesh refinement—and optimal in the sense that the error estimator decays with the same order as the error under mesh refinement. A specific feature of our error estimator is that it can be used to prove the existence of a weak solution up to a certain time based on numerical results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1019-7168 1572-9044 |
DOI: | 10.1007/s10444-024-10212-w |