Recruitment Dynamics of Serpulid Worms in Baffin Bay, Texas: Implications for Habitat Restoration in a Hypersaline Estuary

Low inflows cause predominantly hypersaline conditions in Baffin Bay, TX (USA), which are inhospitable for oysters, the dominant reef-builder in other northern Gulf of Mexico estuaries. Instead, extensive biogenic reefs contain dense aggregations of the ubiquitous tube-building serpulid worm, Hydroi...

Full description

Saved in:
Bibliographic Details
Published inEstuaries and coasts Vol. 46; no. 8; pp. 2148 - 2158
Main Authors Breaux, Natasha, Avalos, Auria, Gilmore, Jennifer, Palmer, Terence A., Beseres Pollack, Jennifer
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Low inflows cause predominantly hypersaline conditions in Baffin Bay, TX (USA), which are inhospitable for oysters, the dominant reef-builder in other northern Gulf of Mexico estuaries. Instead, extensive biogenic reefs contain dense aggregations of the ubiquitous tube-building serpulid worm, Hydroides dianthus . The distribution and size of these reefs have declined over the last several decades. Although serpulid reef habitats have increased in conservation importance, there is a need for ecological knowledge to inform resource management and habitat restoration planning. This study examined spatial and temporal recruitment patterns of serpulid worms and other encrusting species over an 18-month-long period, using recruitment tiles, and live serpulid reef as a reference. Recruitment of H. dianthus occurs year-round; however, the greatest recruitment occurs between September and December. No consistent differences in serpulid recruitment were detected among locations within Baffin Bay, which could be because salinity and temperature were similar among locations, and/or because sampling replication was low. H. dianthus cover was greater on the lower surface of horizontally oriented recruitment tiles (28% cover), whereas Amphibalanus eburneus (barnacle) cover dominated the upper surface of tiles (34% cover). Furthermore, there is no evidence that predation by megafauna (> 1 cm) is hindering serpulid recruitment. There is sufficient larval supply of H. dianthus to suggest that the restoration of serpulid reefs can be successful by providing additional substrate with appropriate microhabitat complexity. Study findings can be used to support planning and successful implementation of serpulid reef restoration.
ISSN:1559-2723
1559-2731
DOI:10.1007/s12237-023-01233-7