On the Relative Complexity of Resolution Refinements and Cutting Planes Proof Systems

An exponential lower bound for the size of tree-like cutting planes refutations of a certain family of conjunctive normal form (CNF) formulas with polynomial size resolution refutations is proved. This implies an exponential separation between the tree-like versions and the dag-like versions of reso...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on computing Vol. 30; no. 5; pp. 1462 - 1484
Main Authors Bonet, Maria Luisa, Esteban, Juan Luis, Galesi, Nicola, Johannsen, Jan
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An exponential lower bound for the size of tree-like cutting planes refutations of a certain family of conjunctive normal form (CNF) formulas with polynomial size resolution refutations is proved. This implies an exponential separation between the tree-like versions and the dag-like versions of resolution and cutting planes. In both cases only superpolynomial separations were known [A. Urquhart, Bull. Symbolic Logic, 1 (1995), pp. 425--467; J. Johannsen, Inform. Process. Lett., 67 (1998), pp. 37--41; P. Clote and A. Setzer, in Proof Complexity and Feasible Arithmetics, Amer. Math. Soc., Providence, RI, 1998, pp. 93--117]. In order to prove these separations, the lower bounds on the depth of monotone circuits of Raz and McKenzie in [ Combinatorica, 19 (1999), pp. 403--435] are extended to monotone real circuits. An exponential separation is also proved between tree-like resolution and several refinements of resolution: negative resolution and regular resolution. Actually, this last separation also provides a separation between tree-like resolution and ordered resolution, and thus the corresponding superpolynomial separation of [A. Urquhart, Bull. Symbolic Logic, 1 (1995), pp. 425--467] is extended. Finally, an exponential separation between ordered resolution and unrestricted resolution (also negative resolution) is proved. Only a superpolynomial separation between ordered and unrestricted resolution was previously known [A. Goerdt, Ann. Math. Artificial Intelligence, 6 (1992), pp. 169--184].
ISSN:0097-5397
1095-7111
DOI:10.1137/S0097539799352474