On computational Poisson geometry I: Symbolic foundations
We present a computational toolkit for (local) Poisson-Nijenhuis calculus on manifolds. Our Python module $\textsf{PoissonGeometry}$ implements our algorithms and accompanies this paper. Examples of how our methods can be used are explained, including gauge transformations of Poisson bivector in dim...
Saved in:
Published in | Journal of geometric mechanics Vol. 13; no. 4; p. 607 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.12.2021
|
Online Access | Get full text |
Cover
Loading…
Summary: | We present a computational toolkit for (local) Poisson-Nijenhuis calculus on manifolds. Our Python module $\textsf{PoissonGeometry}$ implements our algorithms and accompanies this paper. Examples of how our methods can be used are explained, including gauge transformations of Poisson bivector in dimension 3, parametric Poisson bivector fields in dimension 4, and Hamiltonian vector fields of parametric families of Poisson bivectors in dimension 6. |
---|---|
ISSN: | 1941-4889 1941-4897 |
DOI: | 10.3934/jgm.2021018 |