Future Changes in Climatic Variables Due to Greenhouse Warming Increases Dengue Incidence in the Region of the Tucurui Hydroelectric Dam in the Amazon

This study investigates the impact of future changes in climatic variables on dengue incidence in the region of the Tucurui dam in the Amazon. Tucurui dam is the one of the largest hydroelectric power stations in the Amazon. Correlations and regression analysis through least squares fitting between...

Full description

Saved in:
Bibliographic Details
Published inPure and applied geophysics Vol. 178; no. 10; pp. 4033 - 4047
Main Authors Franchito, Sergio H., Rao, V. Brahmananda, Fernandez, Julio Pablo Reyes, Giarolla, E.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study investigates the impact of future changes in climatic variables on dengue incidence in the region of the Tucurui dam in the Amazon. Tucurui dam is the one of the largest hydroelectric power stations in the Amazon. Correlations and regression analysis through least squares fitting between dengue cases and temperature, precipitation, and humidity are obtained. Positive correlations between dengue incidence and temperature are found for lags from 4 to 5 months (higher correlation for lag 5), dengue and precipitation for lags 0 up to 1, and dengue and humidity for lag 0. The positive correlations between dengue and precipitation and between dengue and humidity are higher for the simultaneous correlation. To investigate the impact of the future changes in these climatic variables in the region, projections of RegCM4 model simulations under the RCP 8.5 scenario are obtained. The model projections indicate a warming and moisture increase in the region near the dam at the end of the twenty-first century. Regression analysis using the model projections indicates that the dengue incidence may increase substantially in future climate scenarios in this region (more than fivefold compared with the present climate). This increase is between two and three times higher than the global estimates of dengue incidence in the future. It is suggested that the incidence of dengue cases is more sensitive to changes in temperature. Vector parameters increase with temperature in the future, indicating that the temperature conditions are highly favorable for the spread of the disease in the region. The results indicate that cities in the area surrounding the Tucurui hydroelectric dam are areas of potential dengue incidence in the future. These findings may be applied to hydroelectric dams in other areas of the world. However, future studies involving additional dams are necessary. The results suggest an increase in climate-driven risk of transmission from Aedes aegypti throughout the entire Amazon, and especially the eastern and southern parts.
ISSN:0033-4553
1420-9136
DOI:10.1007/s00024-021-02849-1