Ambrosetti–Prodi type result of first-order differential equations with locally coercive nonlinearities

In this paper, the authors obtain an Ambrosetti–Prodi type result of T -periodic solutions of the first-order differential equations u ′ ( t ) = a ( t ) u ( t ) - f ( t , u ( t ) ) + s , t ∈ R by topological degree method, where T > 0 is a constant, a : R → [ 0 , ∞ ) are T -periodic functions wit...

Full description

Saved in:
Bibliographic Details
Published inMonatshefte für Mathematik Vol. 202; no. 2; pp. 377 - 395
Main Authors Lu, Yanqiong, Wang, Rui
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, the authors obtain an Ambrosetti–Prodi type result of T -periodic solutions of the first-order differential equations u ′ ( t ) = a ( t ) u ( t ) - f ( t , u ( t ) ) + s , t ∈ R by topological degree method, where T > 0 is a constant, a : R → [ 0 , ∞ ) are T -periodic functions with ∫ 0 T a ( t ) d t = 0 , s ∈ R is a parameter; f is a Carathéodory function and T -periodic for the first variable, which f ( t ,  u ) satisfies locally coercive at infinity.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-023-01821-6