Secure state estimation for cyber-physical systems with unknown input sliding mode observer

In recent years, cyber attacks have posed great challenges to the development of cyber-physical systems. It is of great significance to study secure state estimation methods to ensure the safe and stable operation of the system. This paper proposes a secure state estimation for multi-input and multi...

Full description

Saved in:
Bibliographic Details
Published inControl theory and technology Vol. 22; no. 2; pp. 244 - 253
Main Authors Zhang, Panpan, Ren, Yuwei, Fang, Yixian, Liu, Ang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, cyber attacks have posed great challenges to the development of cyber-physical systems. It is of great significance to study secure state estimation methods to ensure the safe and stable operation of the system. This paper proposes a secure state estimation for multi-input and multi-output continuous-time linear cyber-physical systems with sparse actuator and sensor attacks. First, for sparse sensor attacks, we propose an adaptive switching mechanism to mitigate the impact of sparse sensor attacks by filtering out their attack modes. Second, an unknown input sliding mode observer is designed to not only observe the system states, sensor attack signals, and measurement noise present in the system but also counteract the effects of sparse actuator attacks through an unknown input matrix. Finally, for the design of an unknown input sliding mode state observer, the feasibility of the observing system is demonstrated by means of Lyapunov functions. Additionally, simulation experiments are conducted to show the effectiveness of this method.
ISSN:2095-6983
2198-0942
DOI:10.1007/s11768-024-00204-y