Evolutionary stable strategies of a single species model with carry-over effects due to fear Evolutionary stable strategies of a single species model with carry-over effects due to fear
We propose and analyze a single-species population model subject to fear and its carry-over effect with the help of evolutionary game theory (EGT). We incorporate fear and carry-over cost in the growth of a single species resource population and the extensive analysis of our non-evolutionary model s...
Saved in:
Published in | Nonlinear dynamics Vol. 113; no. 4; pp. 3919 - 3941 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose and analyze a single-species population model subject to fear and its carry-over effect with the help of evolutionary game theory (EGT). We incorporate fear and carry-over cost in the growth of a single species resource population and the extensive analysis of our non-evolutionary model suggests that it can exhibit both weak and strong Allee effects. From the game theoretical viewpoint, we assume that the intrinsic growth rate
r
of the resource population and the attack rate
a
of the consumer population are functions of a mean phenotypic trait (
u
) of the resource, following a Normal distribution. Evolutionary stable strategies (ESS) are determined by using ESS maximum principle. Our study of ESS suggests that species extinction may be avoided as a result of evolution, though the extinct equilibrium can also be an ESS under certain conditions. The ratio of variation in the intrinsic growth rate and the attack rate plays a significant role in the ESS conditions of different equilibria as well as the global dynamics of our EGT model. Numerical simulations are performed to support our theoretical analysis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-024-10400-9 |