Structure of relative genus fields of cubic Kummer extensions

Let N = K ( D 3 ) be a cubic Kummer extension of the cyclotomic field K = Q ( ζ 3 ) , containing a primitive cube root of unity ζ 3 , with cube free integer radicand D > 1 . Denote by f the conductor of the abelian extension N / K ,  and by N ∗ the relative genus field of N / K . The aim of the p...

Full description

Saved in:
Bibliographic Details
Published inBoletín de la Sociedad Matemática Mexicana Vol. 29; no. 3
Main Authors Aouissi, Siham, Azizi, Abdelmalek, Ismaili, Moulay Chrif, Mayer, Daniel C., Talbi, Mohamed
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Let N = K ( D 3 ) be a cubic Kummer extension of the cyclotomic field K = Q ( ζ 3 ) , containing a primitive cube root of unity ζ 3 , with cube free integer radicand D > 1 . Denote by f the conductor of the abelian extension N / K ,  and by N ∗ the relative genus field of N / K . The aim of the present work is to find out all positive integers D and conductors f such that the genus group Gal N ∗ / N ≅ Z / 3 Z × Z / 3 Z is elementary bicyclic.
ISSN:1405-213X
2296-4495
DOI:10.1007/s40590-023-00562-8