Numerical and experimental investigation of self-rigidizable Kapton-SMA-based boom
The gossamer space structures can be stowed effortlessly because of a lack of out-of-plane stiffness, but structural strength is needed on partial or complete out-gassing to maintain their deployed state. This study demonstrates a novel approach to producing a self-maintaining shape ability of an in...
Saved in:
Published in | International journal of mechanics and materials in design Vol. 20; no. 3; pp. 545 - 569 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gossamer space structures can be stowed effortlessly because of a lack of out-of-plane stiffness, but structural strength is needed on partial or complete out-gassing to maintain their deployed state. This study demonstrates a novel approach to producing a self-maintaining shape ability of an inflatable cylindrical boom using heat-actuated SMA wires when the inflation gas is vented out from the assembly after complete deployment. Kapton-based and Kapton-SMA-based booms are analyzed numerically for bending stiffness under inflation and no-inflation pressure, followed by experimental validation. At this end, a customized heat test chamber is developed to conduct the required experiments. Furthermore, a parametric study is also performed to find the effect of materials and design parameters on the boom’s stiffness. Before all, the non-linear behavior of double-layered laminated Kapton is found by curve fitting of stretch test data with the optimized different material model parameters to find the best-fitted material model under the hyperelastic materials category. The study helps to find the membrane behavior and rigidization of the inflatable boom in a reversible manner. |
---|---|
AbstractList | The gossamer space structures can be stowed effortlessly because of a lack of out-of-plane stiffness, but structural strength is needed on partial or complete out-gassing to maintain their deployed state. This study demonstrates a novel approach to producing a self-maintaining shape ability of an inflatable cylindrical boom using heat-actuated SMA wires when the inflation gas is vented out from the assembly after complete deployment. Kapton-based and Kapton-SMA-based booms are analyzed numerically for bending stiffness under inflation and no-inflation pressure, followed by experimental validation. At this end, a customized heat test chamber is developed to conduct the required experiments. Furthermore, a parametric study is also performed to find the effect of materials and design parameters on the boom’s stiffness. Before all, the non-linear behavior of double-layered laminated Kapton is found by curve fitting of stretch test data with the optimized different material model parameters to find the best-fitted material model under the hyperelastic materials category. The study helps to find the membrane behavior and rigidization of the inflatable boom in a reversible manner. |
Author | Upadhyay, S. H. Rastogi, Vikas Singh, Kripa Sankar |
Author_xml | – sequence: 1 givenname: Vikas surname: Rastogi fullname: Rastogi, Vikas organization: Smart Material and Structures Laboratory, Mechanical and Industrial Engineering Department, IIT Roorkee Haridwar – sequence: 2 givenname: S. H. surname: Upadhyay fullname: Upadhyay, S. H. email: sanjay.upadhyay@me.iitr.ac.in organization: Smart Material and Structures Laboratory, Mechanical and Industrial Engineering Department, IIT Roorkee Haridwar – sequence: 3 givenname: Kripa Sankar surname: Singh fullname: Singh, Kripa Sankar organization: Space Application Center (SAC), ISRO |
BookMark | eNp9kMlOwzAURS1UJNrCD7CKxNrwHMdxvKwqJlFAYlhbtuNUqVI72CkCvh6XILFj9Qbd-4YzQxPnnUXolMA5AeAXkYAQAkNOMYhSAGYHaEoYp7iqCjLZ56XAhBN6hGYxbgAokKqaoqeH3daG1qguU67O7Eefqq11Q2q07t3GoV2rofUu800Wbdfg0K7buv1SurPZneoH7_Dz_QJrFW2dae-3x-iwUV20J79xjl6vLl-WN3j1eH27XKywyTkMmBQaKlMwy3JRMMjBVEVhda1L4KIRFdSi1tRYYklZcW0scMW5IFCYGojO6RydjXP74N926VK58bvg0kpJgZU5lAUjSZWPKhN8jME2sk8PqvApCcg9Ozmyk4md_GEnWTLR0RST2K1t-Bv9j-sb2MtzPg |
Cites_doi | 10.1016/j.tws.2004.03.007 10.1016/j.tws.2006.01.003 10.1016/j.actaastro.2016.08.021 10.1061/(ASCE)ST.1943-541X.0000068 10.2514/1.A32815 10.1016/j.ijnonlinmec.2014.05.010 10.1007/978-3-319-05197-0 10.2514/1.A32598 10.21236/AD0607541 10.1177/00219983211011528 10.2978/jsas.18.1 10.1177/1045389X18798951 10.1117/12.475159 10.1016/j.sna.2016.04.043 10.1016/j.tws.2009.06.003 10.1007/s10409-010-0348-1 10.1002/pat.5853 10.23919/EuCAP51087.2021.9411188 10.2514/6.2002-1202 10.1016/j.ijsolstr.2021.111063 10.2514/6.2016-1220 10.2514/1.A33488 10.1007/s12567-021-00347-7 10.2514/6.2007-2333 10.1016/S0888-3270(03)00081-5 10.1002/adma.201807738 10.1016/j.engstruct.2020.110292 10.1016/j.proeng.2015.07.080 10.1016/j.compstruct.2022.115211 10.1016/j.euromechsol.2021.104443 10.1016/j.actaastro.2010.09.005 10.2514/6.2000-1822 10.1061/40479(204)8 10.1109/AERO.2018.8396754 10.1016/j.tws.2004.07.015 10.1117/12.2500091 10.1088/0964-1726/19/10/105019 10.1080/15397734.2020.1833738 10.1088/0964-1726/16/2/012 10.1016/j.ijnonlinmec.2012.09.008 10.1017/S000192400001914X 10.4271/1999-01-5520 10.1016/j.ijnonlinmec.2016.11.005 10.2514/1.J061439 10.2514/6.2004-1581 10.2514/6.2002-1593 10.2514/6.2017-5365 10.2514/3.1873 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s10999-023-09690-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-8841 |
EndPage | 569 |
ExternalDocumentID | 10_1007_s10999_023_09690_5 |
GrantInformation_xml | – fundername: Indian Space Research Organisation grantid: ISR-1248-MID funderid: http://dx.doi.org/10.13039/501100001413 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAFGU AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACDTI ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFBBN AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O93 O9J OAM P2P P9P PF0 PT4 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7S Z7Z Z85 ZMTXR ~A9 AAYXX CITATION H13 |
ID | FETCH-LOGICAL-c270t-14b08c45e52945020c844ebdb6079f980d9db3ce1e1687bce07a779104cd01b23 |
IEDL.DBID | AGYKE |
ISSN | 1569-1713 |
IngestDate | Thu Oct 10 18:07:26 EDT 2024 Thu Sep 12 18:05:07 EDT 2024 Wed May 22 06:51:30 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | Load carrying capacity Inflatable structures Shape memory alloys Stiffness analysis Rigidization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c270t-14b08c45e52945020c844ebdb6079f980d9db3ce1e1687bce07a779104cd01b23 |
PQID | 3056206451 |
PQPubID | 2043816 |
PageCount | 25 |
ParticipantIDs | proquest_journals_3056206451 crossref_primary_10_1007_s10999_023_09690_5 springer_journals_10_1007_s10999_023_09690_5 |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | International journal of mechanics and materials in design |
PublicationTitleAbbrev | Int J Mech Mater Des |
PublicationYear | 2024 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | WangCGTanHFExperimental and numerical studies on wrinkling control of an inflated beam using SMA wiresSmart Mater. Struct.20101910501910.1088/0964-1726/19/10/105019 Forbes, F.W.: Expandable structures for space applications: Defense Technical Information Center, Fort Belvoir, VA (1964) Kugler, J., Cherston, J., Joyce, E.R., Shestople, P., Snyder, M.P.: Applications for the Archinaut in space manufacturing and assembly capability. In: AIAA SPACE and Astronautics Forum and Exposition. American Institute of Aeronautics and Astronautics, Orlando, FL (2017) WebberJDeflections of inflated cylindrical cantilever beams subjected to bending and torsionAeronaut. J.19828685830631210.1017/S000192400001914X VeldmanSLWrinkling prediction of cylindrical and conical inflated cantilever beams under torsion and bendingThin-Walled Struct.20064421121510.1016/j.tws.2006.01.003 WangC-GTanH-FDuX-WHeX-DA new model for wrinkling and collapse analysis of membrane inflated beamActa Mech. Sin.20102661762310.1007/s10409-010-0348-1 Grahne, M.S., Cadogan, D.P.: Revolutionary design concepts for inflatable space strucutures. Presented at the World Aviation Congress and Exposition October 19 (1999) Anssari-BenamAHorganCOExtension and torsion of rubber-like hollow and solid circular cylinders for incompressible isotropic hyperelastic materials with limiting chain extensibilityEur. J. Mech. a. Solids202292104443434243710.1016/j.euromechsol.2021.104443 Shen, Y., Montminy, S., Zheng, W., Tokateloff, V., Potvin, M.-J., Akhras, G.: Large SAR membrane antenna deployable structure design and dynamic simulation. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Honolulu, Hawaii (2007) SchenkMViqueratADSeffenKAGuestSDReview of inflatable booms for deployable space structures: packing and rigidizationJ. Spacecr. Rockets.20145176277810.2514/1.A32598 HorganCOThe remarkable Gent constitutive model for hyperelastic materialsInt. J. Non Linear Mech.20156891610.1016/j.ijnonlinmec.2014.05.010 GajewskiMSzczerbaRJemiołoSModelling of elastomeric bearings with application of Yeoh hyperelastic material modelProcedia Eng.201511122022710.1016/j.proeng.2015.07.080 MallikarachchiHMYCPellegrinoSDesign of ultrathin composite self-deployable boomsJ. Spacecr. Rockets.2014511811182110.2514/1.A32815 Bar-Cohen, Y.: Electroactive polymers: current capabilities and challenges. Presented at the SPIE’s 9th Annual International Symposium on Smart Structures and Materials , San Diego, CA July 10 (2002) HuJChenWQuYYangDSafety and serviceability of membrane buildings: a critical review on architectural, material and structural performanceEng. Struct.202021011029210.1016/j.engstruct.2020.110292 DavidsWGIn-plane load-deflection behavior and buckling of pressurized fabric archesJ. Struct. Eng.20091351320132910.1061/(ASCE)ST.1943-541X.0000068 UpadrashtaDYangYExperimental investigation of performance reliability of macro fiber composite for piezoelectric energy harvesting applicationsSens. Actuat Phys.201624422323210.1016/j.sna.2016.04.043 SeedhouseEBigelow aerospace2015ChamSpringer International Publishing10.1007/978-3-319-05197-0 WeiJDingHChaiYErikssonATanHQuasi-static folding and deployment of rigidizable inflatable beamsInt. J. Solids Struct.202123211106310.1016/j.ijsolstr.2021.111063 JinFZhaoCXuPXueJXiaFNonlinear eccentric bending and buckling of laminated cantilever beams actuated by embedded pre-stretched SMA wiresCompos. Struct.202228410.1016/j.compstruct.2022.115211 WrightJSJonesAFarmerBRodmanDLMintonTKPOSS-enhanced colorless organic/inorganic nanocomposite (CORIN®) for atomic oxygen resistance in low earth orbitCEAS Space J.20211339941310.1007/s12567-021-00347-7 Litteken, D.A.: Inflatable technology: using flexible materials to make large structures. In: Bar-Cohen, Y. and Anderson, I.A. (Eds.) Electroactive Polymer Actuators and Devices (EAPAD) XXI. p. 2. SPIE, Denver, USA (2019) Sakamoto, H., Park, K.C., Miyazaki, Y.: Dynamic wrinkle reduction strategies for cable suspended membrane structures. In: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andamp; Materials Conference. American Institute of Aeronautics and Astronautics, Palm Springs, California (2004) ApedoKLRonelSJacquelinEMassenzioMBennaniATheoretical analysis of inflatable beams made from orthotropic fabricThin-Walled Struct.2009471507152210.1016/j.tws.2009.06.003 ComerRLLevySDeflections of an inflated circular-cylindrical cantilever beamAIAA J.196311652165510.2514/3.1873 SeedhouseEGenesis I and IIBigelow Aerospace2015ChamSpringer International Publishing10.1007/978-3-319-05197-0 YooE-JRohJ-HHanJ-HWrinkling control of inflatable booms using shape memory alloy wiresSmart Mater. Struct.20071634034810.1088/0964-1726/16/2/012 SharmaHUpadhyaySHGeometric design and deployment behavior of origami inspired conical structuresMech. Based Des. Struct. Mach.202051111313710.1080/15397734.2020.1833738 GouzmanIGrossmanEVerkerRAtarNBolkerAEliazNAdvances in polyimide-based materials for space applicationsAdv. Mater.201931180773810.1002/adma.201807738 SeedhouseEBigelow’s Space StationBigelow Aerospace2015ChamSpringer International Publishing10.1007/978-3-319-05197-0 MainJAAnalysis and design of inflatable aerospace structures1993VanderbiltVanderbilt University SodanoHAParkGInmanDJAn investigation into the performance of macro-fiber composites for sensing and structural vibration applicationsMech. Syst. Signal Process.20041868369710.1016/S0888-3270(03)00081-5 ThomasJ-CWielgoszCDeflections of highly inflated fabric tubesThin Walled Struct.2004421049106610.1016/j.tws.2004.03.007 BlockJStraubelMWiedemannMUltralight deployable booms for solar sails and other large gossamer structures in spaceActa Astronaut.20116898499210.1016/j.actaastro.2010.09.005 TamadapuGDasGuptaAFinite inflation analysis of a hyperelastic toroidal membrane of initially circular cross-sectionInt. J. Non Linear Mech.201349313910.1016/j.ijnonlinmec.2012.09.008 YanZZhangLJinWImproved finite element method for inflated beams with local wrinklesAIAA J.2022604278428710.2514/1.J061439 BashirMRajendranPA review on electroactive polymers development for aerospace applicationsJ. Intell. Mater. Syst. Struct.2018293681369510.1177/1045389X18798951 LatorreMRosaEDMontánsFJUnderstanding the need of the compression branch to characterize hyperelastic materialsInt. J. Non Linear Mech.201789142410.1016/j.ijnonlinmec.2016.11.005 TaoQWangCXueZXieZTanHWrinkling and collapse of mesh reinforced membrane inflated beam under bendingActa Astronaut.201612855155910.1016/j.actaastro.2016.08.021 BeukersABending of anisotropic inflated cylindrical beamsThin-Walled Struct.20054346147510.1016/j.tws.2004.07.015 KhajamoinuddinSMChatterjeeABhatMHarursampathDGundiahNMechanical characterization of a woven multi-layered hyperelastic composite laminate under uniaxial loadingJ. Compos. Mater.2021553229323910.1177/00219983211011528 LeeIConfigulation control of aerospace structures with smart materialsJ. Adv. Sci.200618121510.2978/jsas.18.1 DuHYaoYZhaoYA space deployable antenna model based on shape memory alloy composite with folding-deploying two-way behaviorPolym. Adv. Technol. Pat.202233124214422210.1002/pat.5853 Secheli, G., Viquerat, A., Aglietti, G.: Mechanical development of a novel inflatable and rigidizable structure. In: 3rd AIAA Spacecraft Structures Conference. American Institute of Aeronautics and Astronautics, San Diego, California, USA (2016) Allred, R., Hoyt, A., Scarborough, S., Cadogan, D., McElroy, P.: UV Rigidizable Carbon-Reinforced Isogrid Inflatable Booms. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Denver, Colorado (2002) Guidanean, K., Lichodziejewski, D.: An inflatable rigidizable truss structure based on new Sub-Tg polyurethane composites. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Denver, Colorado (2002) KimotoYFujitaTFurutaNKitamuraASuzukiHDevelopment of space-qualified photocurable-silsesquioxane-coated polyimide filmsJ. Spacecr. Rockets.2016531028103410.2514/1.A33488 de la Fuente, H., Raboin, J., Valle, G., Spexarth, G.: TransHab NASA’s large-scale inflatable spacecraft. In: 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. American Institute of Aeronautics and Astronautics, Atlanta,GA,U.S.A. (2000) Chandra, A., Thangavelautham, J., Babuscia, A.: Modular inflatable space structures. In: 2018 IEEE Aerospace Conference. pp. 1–9. IEEE, Big Sky, MT (2018) Vertegaal, C.J.C., Bentum, M.J., Pourshaghaghi, H.R.: Using shape memory alloy for cubesat antenna design in space. In: 2021 15th European Conference on Antennas and Propagation (EuCAP). pp. 1–5. IEEE, Dusseldorf, Germany (2021) Kennedy, K.J., Adams, C.M.: ISS TransHab: An inflatable habitat. In: Space 2000. pp. 89–100. American Society of Civil Engineers, Albuquerque, New Mexico, USA (2000) 9690_CR17 I Lee (9690_CR26) 2006; 18 RL Comer (9690_CR9) 1963; 1 KL Apedo (9690_CR3) 2009; 47 M Gajewski (9690_CR14) 2015; 111 WG Davids (9690_CR10) 2009; 135 Y Kimoto (9690_CR23) 2016; 53 H Sharma (9690_CR36) 2020; 51 9690_CR4 E-J Yoo (9690_CR52) 2007; 16 9690_CR8 9690_CR21 CO Horgan (9690_CR18) 2015; 68 9690_CR27 9690_CR24 C-G Wang (9690_CR47) 2010; 26 9690_CR1 JS Wright (9690_CR50) 2021; 13 I Gouzman (9690_CR15) 2019; 31 Q Tao (9690_CR40) 2016; 128 J Webber (9690_CR48) 1982; 86 G Tamadapu (9690_CR39) 2013; 49 Z Yan (9690_CR51) 2022; 60 D Upadrashta (9690_CR43) 2016; 244 9690_CR30 E Seedhouse (9690_CR33) 2015 M Bashir (9690_CR5) 2018; 29 J Wei (9690_CR49) 2021; 232 JA Main (9690_CR28) 1993 9690_CR32 9690_CR37 E Seedhouse (9690_CR34) 2015 J Block (9690_CR7) 2011; 68 M Schenk (9690_CR31) 2014; 51 9690_CR45 SL Veldman (9690_CR44) 2006; 44 HMYC Mallikarachchi (9690_CR29) 2014; 51 HA Sodano (9690_CR38) 2004; 18 CG Wang (9690_CR46) 2010; 19 SM Khajamoinuddin (9690_CR22) 2021; 55 A Anssari-Benam (9690_CR2) 2022; 92 J Hu (9690_CR19) 2020; 210 J-C Thomas (9690_CR42) 2004; 42 M Latorre (9690_CR25) 2017; 89 E Seedhouse (9690_CR35) 2015 A Beukers (9690_CR6) 2005; 43 9690_CR12 H Du (9690_CR11) 2022; 33 9690_CR16 9690_CR13 F Jin (9690_CR20) 2022; 284 |
References_xml | – volume: 42 start-page: 1049 year: 2004 ident: 9690_CR42 publication-title: Thin Walled Struct. doi: 10.1016/j.tws.2004.03.007 contributor: fullname: J-C Thomas – volume: 44 start-page: 211 year: 2006 ident: 9690_CR44 publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2006.01.003 contributor: fullname: SL Veldman – volume: 128 start-page: 551 year: 2016 ident: 9690_CR40 publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2016.08.021 contributor: fullname: Q Tao – volume: 135 start-page: 1320 year: 2009 ident: 9690_CR10 publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0000068 contributor: fullname: WG Davids – volume: 51 start-page: 1811 year: 2014 ident: 9690_CR29 publication-title: J. Spacecr. Rockets. doi: 10.2514/1.A32815 contributor: fullname: HMYC Mallikarachchi – volume: 68 start-page: 9 year: 2015 ident: 9690_CR18 publication-title: Int. J. Non Linear Mech. doi: 10.1016/j.ijnonlinmec.2014.05.010 contributor: fullname: CO Horgan – volume-title: Bigelow aerospace year: 2015 ident: 9690_CR35 doi: 10.1007/978-3-319-05197-0 contributor: fullname: E Seedhouse – volume: 51 start-page: 762 year: 2014 ident: 9690_CR31 publication-title: J. Spacecr. Rockets. doi: 10.2514/1.A32598 contributor: fullname: M Schenk – ident: 9690_CR12 doi: 10.21236/AD0607541 – volume: 55 start-page: 3229 year: 2021 ident: 9690_CR22 publication-title: J. Compos. Mater. doi: 10.1177/00219983211011528 contributor: fullname: SM Khajamoinuddin – volume-title: Analysis and design of inflatable aerospace structures year: 1993 ident: 9690_CR28 contributor: fullname: JA Main – volume: 18 start-page: 1 issue: 12 year: 2006 ident: 9690_CR26 publication-title: J. Adv. Sci. doi: 10.2978/jsas.18.1 contributor: fullname: I Lee – volume: 29 start-page: 3681 year: 2018 ident: 9690_CR5 publication-title: J. Intell. Mater. Syst. Struct. doi: 10.1177/1045389X18798951 contributor: fullname: M Bashir – ident: 9690_CR4 doi: 10.1117/12.475159 – volume-title: Bigelow Aerospace year: 2015 ident: 9690_CR34 doi: 10.1007/978-3-319-05197-0 contributor: fullname: E Seedhouse – volume: 244 start-page: 223 year: 2016 ident: 9690_CR43 publication-title: Sens. Actuat Phys. doi: 10.1016/j.sna.2016.04.043 contributor: fullname: D Upadrashta – volume: 47 start-page: 1507 year: 2009 ident: 9690_CR3 publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2009.06.003 contributor: fullname: KL Apedo – volume: 26 start-page: 617 year: 2010 ident: 9690_CR47 publication-title: Acta Mech. Sin. doi: 10.1007/s10409-010-0348-1 contributor: fullname: C-G Wang – volume: 33 start-page: 4214 issue: 12 year: 2022 ident: 9690_CR11 publication-title: Polym. Adv. Technol. Pat. doi: 10.1002/pat.5853 contributor: fullname: H Du – ident: 9690_CR45 doi: 10.23919/EuCAP51087.2021.9411188 – ident: 9690_CR1 doi: 10.2514/6.2002-1202 – volume: 232 start-page: 111063 year: 2021 ident: 9690_CR49 publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2021.111063 contributor: fullname: J Wei – ident: 9690_CR32 doi: 10.2514/6.2016-1220 – volume: 53 start-page: 1028 year: 2016 ident: 9690_CR23 publication-title: J. Spacecr. Rockets. doi: 10.2514/1.A33488 contributor: fullname: Y Kimoto – volume: 13 start-page: 399 year: 2021 ident: 9690_CR50 publication-title: CEAS Space J. doi: 10.1007/s12567-021-00347-7 contributor: fullname: JS Wright – ident: 9690_CR37 doi: 10.2514/6.2007-2333 – volume: 18 start-page: 683 year: 2004 ident: 9690_CR38 publication-title: Mech. Syst. Signal Process. doi: 10.1016/S0888-3270(03)00081-5 contributor: fullname: HA Sodano – volume-title: Bigelow Aerospace year: 2015 ident: 9690_CR33 doi: 10.1007/978-3-319-05197-0 contributor: fullname: E Seedhouse – volume: 31 start-page: 1807738 year: 2019 ident: 9690_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201807738 contributor: fullname: I Gouzman – volume: 210 start-page: 110292 year: 2020 ident: 9690_CR19 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110292 contributor: fullname: J Hu – volume: 111 start-page: 220 year: 2015 ident: 9690_CR14 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.07.080 contributor: fullname: M Gajewski – volume: 284 year: 2022 ident: 9690_CR20 publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2022.115211 contributor: fullname: F Jin – volume: 92 start-page: 104443 year: 2022 ident: 9690_CR2 publication-title: Eur. J. Mech. a. Solids doi: 10.1016/j.euromechsol.2021.104443 contributor: fullname: A Anssari-Benam – volume: 68 start-page: 984 year: 2011 ident: 9690_CR7 publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2010.09.005 contributor: fullname: J Block – ident: 9690_CR13 doi: 10.2514/6.2000-1822 – ident: 9690_CR21 doi: 10.1061/40479(204)8 – ident: 9690_CR8 doi: 10.1109/AERO.2018.8396754 – volume: 43 start-page: 461 year: 2005 ident: 9690_CR6 publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2004.07.015 contributor: fullname: A Beukers – ident: 9690_CR27 doi: 10.1117/12.2500091 – volume: 19 start-page: 105019 year: 2010 ident: 9690_CR46 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/10/105019 contributor: fullname: CG Wang – volume: 51 start-page: 113 issue: 1 year: 2020 ident: 9690_CR36 publication-title: Mech. Based Des. Struct. Mach. doi: 10.1080/15397734.2020.1833738 contributor: fullname: H Sharma – volume: 16 start-page: 340 year: 2007 ident: 9690_CR52 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/16/2/012 contributor: fullname: E-J Yoo – volume: 49 start-page: 31 year: 2013 ident: 9690_CR39 publication-title: Int. J. Non Linear Mech. doi: 10.1016/j.ijnonlinmec.2012.09.008 contributor: fullname: G Tamadapu – volume: 86 start-page: 306 issue: 858 year: 1982 ident: 9690_CR48 publication-title: Aeronaut. J. doi: 10.1017/S000192400001914X contributor: fullname: J Webber – ident: 9690_CR16 doi: 10.4271/1999-01-5520 – volume: 89 start-page: 14 year: 2017 ident: 9690_CR25 publication-title: Int. J. Non Linear Mech. doi: 10.1016/j.ijnonlinmec.2016.11.005 contributor: fullname: M Latorre – volume: 60 start-page: 4278 year: 2022 ident: 9690_CR51 publication-title: AIAA J. doi: 10.2514/1.J061439 contributor: fullname: Z Yan – ident: 9690_CR30 doi: 10.2514/6.2004-1581 – ident: 9690_CR17 doi: 10.2514/6.2002-1593 – ident: 9690_CR24 doi: 10.2514/6.2017-5365 – volume: 1 start-page: 1652 year: 1963 ident: 9690_CR9 publication-title: AIAA J. doi: 10.2514/3.1873 contributor: fullname: RL Comer |
SSID | ssj0030188 |
Score | 2.3537757 |
Snippet | The gossamer space structures can be stowed effortlessly because of a lack of out-of-plane stiffness, but structural strength is needed on partial or complete... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 545 |
SubjectTerms | Characterization and Evaluation of Materials Classical Mechanics Curve fitting Design parameters Engineering Engineering Design Gossamer structures Inflatable space structures Kapton (trademark) Polyimide resins Solid Mechanics Stiffness Structural strength Test chambers |
Title | Numerical and experimental investigation of self-rigidizable Kapton-SMA-based boom |
URI | https://link.springer.com/article/10.1007/s10999-023-09690-5 https://www.proquest.com/docview/3056206451 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EolQc2MIodO4nHClEqqnYAKpUpil8SoqQVbRd-Pc5LKa-BOYmlnM--73T3fQdwQa2NqHQ7YLUKMFPM4EgZi0MqJTdE6iRn8Q9HQX_M7id8UvO482b3qiKZX9RrXLecME997FC38DDfhKaLPT5vQLN79zy4rS5g57L5uEmXmQhMXBJWcmV-X-VrPKpB5re6aB5uervwVJF2ii6T1-vVUl6rj58ajv_5kz3YKeEn6hb-sg8bJj2A7TVRwkN4GK2KKs4UJalG6yMA0EutyjFL0cyihZlanM3W0ll32NSgQTLPhhI_Drs4C5AaORT_dgTj3u3TTR-XkxewoqG3xIRJL1KMG04F4w5RqogxI7UMvFBYEXlaaOkrQwwJolAq44VJGDrkwZT2iKT-MTTSWWpOAIWJYJpQqYTLJWUk3cc-FwljyhISWK8Fl5X943khsBHXUsqZpWJnqTi3VMxb0K62KC4P2yLOsiCa6e6RFlxVJq8f_73a6f9eP4Mt6iBN0SjWhsbyfWXOHSRZyk7pgh3YHNPuJ2lV11c |
link.rule.ids | 315,786,790,27946,27947,41105,41547,42174,42616,52135,52258 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHNSDbyOK2oM3LdmW7qNHYkCUx0EhwdNm-0qMuBCBi7_e7isg0QPn3W26M9PON5mZbwBuqTEBFVYDRkkPM8k0DqQ22KdCuJoIFaVd_L2-1x6y55E7ypvCZkW1e5GSTG_qlWa3tGOe1rGF3dzB7jaUWYKoS1BuPL51msUNbG02nTdpQxOOiY3C8maZv1f57ZCWKHMtMZr6m9YBDIudZmUmH7XFXNTk9xqJ46a_cgj7OQBFjcxijmBLx8ewt0JLeAIv_UWWxxmjKFZodQgAel_yckxiNDFopscGJ9O1VFIfNtaoE02TscSvvQZOXKRCFsd_nsKw1Rw8tHE-ewFL6jtzTJhwAslc7VLOXIspZcCYFkp4js8NDxzFlahLTTTxAl9I7fiR71vswaRyiKD1MyjFk1ifA_IjzhShQnIbTYpA2I_rLo8Yk4YQzzgVuCsUEE4zio1wSaacSCq0kgpTSYVuBaqFjsL8uM3CJA6iCfMeqcB9IfLl4_9Xu9js9RvYaQ963bD71O9cwi61ACcrG6tCaf610FcWoMzFdW6PPxWJ2kI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BGFAj5wA0Ps2kl8rIBSKFSIRYJTFG8SoqQVTS98Pc6mFgQHxDmJlcyMM2_keW8ADqi1IZXOA1YrHzPFDA6VsTigUnJDpI5zFv9Nz-88sqsn_jTF4s-73asjyYLTkKk0JenJUNuTKeJbzp6nTewguPAwn4U55jIZr8Fc6-K5e179jV385rMnXZkiMHEVWUmc-XmVr8lpgji_HZLmuae9DHH11kXLyevxOJXH6uOboON_PmsFlkpgilpFJK3CjEnWYHFKrnAd7nrj4nynj-JEo-nhAOhlotcxSNDAopHpW5xN3dJZ31jfoG48zMYV39-0cJY6NXL4_m0DHtvnD6cdXM5kwIoGXooJk16oGDecCsYd1lQhY0Zq6XuBsCL0tNCyqQwxxA8DqYwXxEHgMAlT2iOSNjehlgwSswUoiAXThEolXJUpQ-kebnIRM6YsIb716nBYOSMaFtIb0URkObNU5CwV5ZaKeB0alb-ichuOoqw-opkiH6nDUWX-yeXfV9v-2-37MH971o6uL3vdHVigDvcU3WQNqKXvY7PrcEsq98rQ_AS8auMd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+and+experimental+investigation+of+self-rigidizable+Kapton-SMA-based+boom&rft.jtitle=International+journal+of+mechanics+and+materials+in+design&rft.au=Rastogi+Vikas&rft.au=Upadhyay%2C+S+H&rft.au=Singh%2C+Kripa+Sankar&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1569-1713&rft.eissn=1573-8841&rft.volume=20&rft.issue=3&rft.spage=545&rft.epage=569&rft_id=info:doi/10.1007%2Fs10999-023-09690-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-1713&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-1713&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-1713&client=summon |