Numerical and experimental investigation of self-rigidizable Kapton-SMA-based boom

The gossamer space structures can be stowed effortlessly because of a lack of out-of-plane stiffness, but structural strength is needed on partial or complete out-gassing to maintain their deployed state. This study demonstrates a novel approach to producing a self-maintaining shape ability of an in...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanics and materials in design Vol. 20; no. 3; pp. 545 - 569
Main Authors Rastogi, Vikas, Upadhyay, S. H., Singh, Kripa Sankar
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The gossamer space structures can be stowed effortlessly because of a lack of out-of-plane stiffness, but structural strength is needed on partial or complete out-gassing to maintain their deployed state. This study demonstrates a novel approach to producing a self-maintaining shape ability of an inflatable cylindrical boom using heat-actuated SMA wires when the inflation gas is vented out from the assembly after complete deployment. Kapton-based and Kapton-SMA-based booms are analyzed numerically for bending stiffness under inflation and no-inflation pressure, followed by experimental validation. At this end, a customized heat test chamber is developed to conduct the required experiments. Furthermore, a parametric study is also performed to find the effect of materials and design parameters on the boom’s stiffness. Before all, the non-linear behavior of double-layered laminated Kapton is found by curve fitting of stretch test data with the optimized different material model parameters to find the best-fitted material model under the hyperelastic materials category. The study helps to find the membrane behavior and rigidization of the inflatable boom in a reversible manner.
AbstractList The gossamer space structures can be stowed effortlessly because of a lack of out-of-plane stiffness, but structural strength is needed on partial or complete out-gassing to maintain their deployed state. This study demonstrates a novel approach to producing a self-maintaining shape ability of an inflatable cylindrical boom using heat-actuated SMA wires when the inflation gas is vented out from the assembly after complete deployment. Kapton-based and Kapton-SMA-based booms are analyzed numerically for bending stiffness under inflation and no-inflation pressure, followed by experimental validation. At this end, a customized heat test chamber is developed to conduct the required experiments. Furthermore, a parametric study is also performed to find the effect of materials and design parameters on the boom’s stiffness. Before all, the non-linear behavior of double-layered laminated Kapton is found by curve fitting of stretch test data with the optimized different material model parameters to find the best-fitted material model under the hyperelastic materials category. The study helps to find the membrane behavior and rigidization of the inflatable boom in a reversible manner.
Author Upadhyay, S. H.
Rastogi, Vikas
Singh, Kripa Sankar
Author_xml – sequence: 1
  givenname: Vikas
  surname: Rastogi
  fullname: Rastogi, Vikas
  organization: Smart Material and Structures Laboratory, Mechanical and Industrial Engineering Department, IIT Roorkee Haridwar
– sequence: 2
  givenname: S. H.
  surname: Upadhyay
  fullname: Upadhyay, S. H.
  email: sanjay.upadhyay@me.iitr.ac.in
  organization: Smart Material and Structures Laboratory, Mechanical and Industrial Engineering Department, IIT Roorkee Haridwar
– sequence: 3
  givenname: Kripa Sankar
  surname: Singh
  fullname: Singh, Kripa Sankar
  organization: Space Application Center (SAC), ISRO
BookMark eNp9kMlOwzAURS1UJNrCD7CKxNrwHMdxvKwqJlFAYlhbtuNUqVI72CkCvh6XILFj9Qbd-4YzQxPnnUXolMA5AeAXkYAQAkNOMYhSAGYHaEoYp7iqCjLZ56XAhBN6hGYxbgAokKqaoqeH3daG1qguU67O7Eefqq11Q2q07t3GoV2rofUu800Wbdfg0K7buv1SurPZneoH7_Dz_QJrFW2dae-3x-iwUV20J79xjl6vLl-WN3j1eH27XKywyTkMmBQaKlMwy3JRMMjBVEVhda1L4KIRFdSi1tRYYklZcW0scMW5IFCYGojO6RydjXP74N926VK58bvg0kpJgZU5lAUjSZWPKhN8jME2sk8PqvApCcg9Ozmyk4md_GEnWTLR0RST2K1t-Bv9j-sb2MtzPg
Cites_doi 10.1016/j.tws.2004.03.007
10.1016/j.tws.2006.01.003
10.1016/j.actaastro.2016.08.021
10.1061/(ASCE)ST.1943-541X.0000068
10.2514/1.A32815
10.1016/j.ijnonlinmec.2014.05.010
10.1007/978-3-319-05197-0
10.2514/1.A32598
10.21236/AD0607541
10.1177/00219983211011528
10.2978/jsas.18.1
10.1177/1045389X18798951
10.1117/12.475159
10.1016/j.sna.2016.04.043
10.1016/j.tws.2009.06.003
10.1007/s10409-010-0348-1
10.1002/pat.5853
10.23919/EuCAP51087.2021.9411188
10.2514/6.2002-1202
10.1016/j.ijsolstr.2021.111063
10.2514/6.2016-1220
10.2514/1.A33488
10.1007/s12567-021-00347-7
10.2514/6.2007-2333
10.1016/S0888-3270(03)00081-5
10.1002/adma.201807738
10.1016/j.engstruct.2020.110292
10.1016/j.proeng.2015.07.080
10.1016/j.compstruct.2022.115211
10.1016/j.euromechsol.2021.104443
10.1016/j.actaastro.2010.09.005
10.2514/6.2000-1822
10.1061/40479(204)8
10.1109/AERO.2018.8396754
10.1016/j.tws.2004.07.015
10.1117/12.2500091
10.1088/0964-1726/19/10/105019
10.1080/15397734.2020.1833738
10.1088/0964-1726/16/2/012
10.1016/j.ijnonlinmec.2012.09.008
10.1017/S000192400001914X
10.4271/1999-01-5520
10.1016/j.ijnonlinmec.2016.11.005
10.2514/1.J061439
10.2514/6.2004-1581
10.2514/6.2002-1593
10.2514/6.2017-5365
10.2514/3.1873
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10999-023-09690-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-8841
EndPage 569
ExternalDocumentID 10_1007_s10999_023_09690_5
GrantInformation_xml – fundername: Indian Space Research Organisation
  grantid: ISR-1248-MID
  funderid: http://dx.doi.org/10.13039/501100001413
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAFGU
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFBBN
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9P
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7Z
Z85
ZMTXR
~A9
AAYXX
CITATION
H13
ID FETCH-LOGICAL-c270t-14b08c45e52945020c844ebdb6079f980d9db3ce1e1687bce07a779104cd01b23
IEDL.DBID AGYKE
ISSN 1569-1713
IngestDate Thu Oct 10 18:07:26 EDT 2024
Thu Sep 12 18:05:07 EDT 2024
Wed May 22 06:51:30 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Load carrying capacity
Inflatable structures
Shape memory alloys
Stiffness analysis
Rigidization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c270t-14b08c45e52945020c844ebdb6079f980d9db3ce1e1687bce07a779104cd01b23
PQID 3056206451
PQPubID 2043816
PageCount 25
ParticipantIDs proquest_journals_3056206451
crossref_primary_10_1007_s10999_023_09690_5
springer_journals_10_1007_s10999_023_09690_5
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of mechanics and materials in design
PublicationTitleAbbrev Int J Mech Mater Des
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References WangCGTanHFExperimental and numerical studies on wrinkling control of an inflated beam using SMA wiresSmart Mater. Struct.20101910501910.1088/0964-1726/19/10/105019
Forbes, F.W.: Expandable structures for space applications: Defense Technical Information Center, Fort Belvoir, VA (1964)
Kugler, J., Cherston, J., Joyce, E.R., Shestople, P., Snyder, M.P.: Applications for the Archinaut in space manufacturing and assembly capability. In: AIAA SPACE and Astronautics Forum and Exposition. American Institute of Aeronautics and Astronautics, Orlando, FL (2017)
WebberJDeflections of inflated cylindrical cantilever beams subjected to bending and torsionAeronaut. J.19828685830631210.1017/S000192400001914X
VeldmanSLWrinkling prediction of cylindrical and conical inflated cantilever beams under torsion and bendingThin-Walled Struct.20064421121510.1016/j.tws.2006.01.003
WangC-GTanH-FDuX-WHeX-DA new model for wrinkling and collapse analysis of membrane inflated beamActa Mech. Sin.20102661762310.1007/s10409-010-0348-1
Grahne, M.S., Cadogan, D.P.: Revolutionary design concepts for inflatable space strucutures. Presented at the World Aviation Congress and Exposition October 19 (1999)
Anssari-BenamAHorganCOExtension and torsion of rubber-like hollow and solid circular cylinders for incompressible isotropic hyperelastic materials with limiting chain extensibilityEur. J. Mech. a. Solids202292104443434243710.1016/j.euromechsol.2021.104443
Shen, Y., Montminy, S., Zheng, W., Tokateloff, V., Potvin, M.-J., Akhras, G.: Large SAR membrane antenna deployable structure design and dynamic simulation. In: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Honolulu, Hawaii (2007)
SchenkMViqueratADSeffenKAGuestSDReview of inflatable booms for deployable space structures: packing and rigidizationJ. Spacecr. Rockets.20145176277810.2514/1.A32598
HorganCOThe remarkable Gent constitutive model for hyperelastic materialsInt. J. Non Linear Mech.20156891610.1016/j.ijnonlinmec.2014.05.010
GajewskiMSzczerbaRJemiołoSModelling of elastomeric bearings with application of Yeoh hyperelastic material modelProcedia Eng.201511122022710.1016/j.proeng.2015.07.080
MallikarachchiHMYCPellegrinoSDesign of ultrathin composite self-deployable boomsJ. Spacecr. Rockets.2014511811182110.2514/1.A32815
Bar-Cohen, Y.: Electroactive polymers: current capabilities and challenges. Presented at the SPIE’s 9th Annual International Symposium on Smart Structures and Materials , San Diego, CA July 10 (2002)
HuJChenWQuYYangDSafety and serviceability of membrane buildings: a critical review on architectural, material and structural performanceEng. Struct.202021011029210.1016/j.engstruct.2020.110292
DavidsWGIn-plane load-deflection behavior and buckling of pressurized fabric archesJ. Struct. Eng.20091351320132910.1061/(ASCE)ST.1943-541X.0000068
UpadrashtaDYangYExperimental investigation of performance reliability of macro fiber composite for piezoelectric energy harvesting applicationsSens. Actuat Phys.201624422323210.1016/j.sna.2016.04.043
SeedhouseEBigelow aerospace2015ChamSpringer International Publishing10.1007/978-3-319-05197-0
WeiJDingHChaiYErikssonATanHQuasi-static folding and deployment of rigidizable inflatable beamsInt. J. Solids Struct.202123211106310.1016/j.ijsolstr.2021.111063
JinFZhaoCXuPXueJXiaFNonlinear eccentric bending and buckling of laminated cantilever beams actuated by embedded pre-stretched SMA wiresCompos. Struct.202228410.1016/j.compstruct.2022.115211
WrightJSJonesAFarmerBRodmanDLMintonTKPOSS-enhanced colorless organic/inorganic nanocomposite (CORIN®) for atomic oxygen resistance in low earth orbitCEAS Space J.20211339941310.1007/s12567-021-00347-7
Litteken, D.A.: Inflatable technology: using flexible materials to make large structures. In: Bar-Cohen, Y. and Anderson, I.A. (Eds.) Electroactive Polymer Actuators and Devices (EAPAD) XXI. p. 2. SPIE, Denver, USA (2019)
Sakamoto, H., Park, K.C., Miyazaki, Y.: Dynamic wrinkle reduction strategies for cable suspended membrane structures. In: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andamp; Materials Conference. American Institute of Aeronautics and Astronautics, Palm Springs, California (2004)
ApedoKLRonelSJacquelinEMassenzioMBennaniATheoretical analysis of inflatable beams made from orthotropic fabricThin-Walled Struct.2009471507152210.1016/j.tws.2009.06.003
ComerRLLevySDeflections of an inflated circular-cylindrical cantilever beamAIAA J.196311652165510.2514/3.1873
SeedhouseEGenesis I and IIBigelow Aerospace2015ChamSpringer International Publishing10.1007/978-3-319-05197-0
YooE-JRohJ-HHanJ-HWrinkling control of inflatable booms using shape memory alloy wiresSmart Mater. Struct.20071634034810.1088/0964-1726/16/2/012
SharmaHUpadhyaySHGeometric design and deployment behavior of origami inspired conical structuresMech. Based Des. Struct. Mach.202051111313710.1080/15397734.2020.1833738
GouzmanIGrossmanEVerkerRAtarNBolkerAEliazNAdvances in polyimide-based materials for space applicationsAdv. Mater.201931180773810.1002/adma.201807738
SeedhouseEBigelow’s Space StationBigelow Aerospace2015ChamSpringer International Publishing10.1007/978-3-319-05197-0
MainJAAnalysis and design of inflatable aerospace structures1993VanderbiltVanderbilt University
SodanoHAParkGInmanDJAn investigation into the performance of macro-fiber composites for sensing and structural vibration applicationsMech. Syst. Signal Process.20041868369710.1016/S0888-3270(03)00081-5
ThomasJ-CWielgoszCDeflections of highly inflated fabric tubesThin Walled Struct.2004421049106610.1016/j.tws.2004.03.007
BlockJStraubelMWiedemannMUltralight deployable booms for solar sails and other large gossamer structures in spaceActa Astronaut.20116898499210.1016/j.actaastro.2010.09.005
TamadapuGDasGuptaAFinite inflation analysis of a hyperelastic toroidal membrane of initially circular cross-sectionInt. J. Non Linear Mech.201349313910.1016/j.ijnonlinmec.2012.09.008
YanZZhangLJinWImproved finite element method for inflated beams with local wrinklesAIAA J.2022604278428710.2514/1.J061439
BashirMRajendranPA review on electroactive polymers development for aerospace applicationsJ. Intell. Mater. Syst. Struct.2018293681369510.1177/1045389X18798951
LatorreMRosaEDMontánsFJUnderstanding the need of the compression branch to characterize hyperelastic materialsInt. J. Non Linear Mech.201789142410.1016/j.ijnonlinmec.2016.11.005
TaoQWangCXueZXieZTanHWrinkling and collapse of mesh reinforced membrane inflated beam under bendingActa Astronaut.201612855155910.1016/j.actaastro.2016.08.021
BeukersABending of anisotropic inflated cylindrical beamsThin-Walled Struct.20054346147510.1016/j.tws.2004.07.015
KhajamoinuddinSMChatterjeeABhatMHarursampathDGundiahNMechanical characterization of a woven multi-layered hyperelastic composite laminate under uniaxial loadingJ. Compos. Mater.2021553229323910.1177/00219983211011528
LeeIConfigulation control of aerospace structures with smart materialsJ. Adv. Sci.200618121510.2978/jsas.18.1
DuHYaoYZhaoYA space deployable antenna model based on shape memory alloy composite with folding-deploying two-way behaviorPolym. Adv. Technol. Pat.202233124214422210.1002/pat.5853
Secheli, G., Viquerat, A., Aglietti, G.: Mechanical development of a novel inflatable and rigidizable structure. In: 3rd AIAA Spacecraft Structures Conference. American Institute of Aeronautics and Astronautics, San Diego, California, USA (2016)
Allred, R., Hoyt, A., Scarborough, S., Cadogan, D., McElroy, P.: UV Rigidizable Carbon-Reinforced Isogrid Inflatable Booms. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Denver, Colorado (2002)
Guidanean, K., Lichodziejewski, D.: An inflatable rigidizable truss structure based on new Sub-Tg polyurethane composites. In: 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, Denver, Colorado (2002)
KimotoYFujitaTFurutaNKitamuraASuzukiHDevelopment of space-qualified photocurable-silsesquioxane-coated polyimide filmsJ. Spacecr. Rockets.2016531028103410.2514/1.A33488
de la Fuente, H., Raboin, J., Valle, G., Spexarth, G.: TransHab NASA’s large-scale inflatable spacecraft. In: 41st Structures, Structural Dynamics, and Materials Conference and Exhibit. American Institute of Aeronautics and Astronautics, Atlanta,GA,U.S.A. (2000)
Chandra, A., Thangavelautham, J., Babuscia, A.: Modular inflatable space structures. In: 2018 IEEE Aerospace Conference. pp. 1–9. IEEE, Big Sky, MT (2018)
Vertegaal, C.J.C., Bentum, M.J., Pourshaghaghi, H.R.: Using shape memory alloy for cubesat antenna design in space. In: 2021 15th European Conference on Antennas and Propagation (EuCAP). pp. 1–5. IEEE, Dusseldorf, Germany (2021)
Kennedy, K.J., Adams, C.M.: ISS TransHab: An inflatable habitat. In: Space 2000. pp. 89–100. American Society of Civil Engineers, Albuquerque, New Mexico, USA (2000)
9690_CR17
I Lee (9690_CR26) 2006; 18
RL Comer (9690_CR9) 1963; 1
KL Apedo (9690_CR3) 2009; 47
M Gajewski (9690_CR14) 2015; 111
WG Davids (9690_CR10) 2009; 135
Y Kimoto (9690_CR23) 2016; 53
H Sharma (9690_CR36) 2020; 51
9690_CR4
E-J Yoo (9690_CR52) 2007; 16
9690_CR8
9690_CR21
CO Horgan (9690_CR18) 2015; 68
9690_CR27
9690_CR24
C-G Wang (9690_CR47) 2010; 26
9690_CR1
JS Wright (9690_CR50) 2021; 13
I Gouzman (9690_CR15) 2019; 31
Q Tao (9690_CR40) 2016; 128
J Webber (9690_CR48) 1982; 86
G Tamadapu (9690_CR39) 2013; 49
Z Yan (9690_CR51) 2022; 60
D Upadrashta (9690_CR43) 2016; 244
9690_CR30
E Seedhouse (9690_CR33) 2015
M Bashir (9690_CR5) 2018; 29
J Wei (9690_CR49) 2021; 232
JA Main (9690_CR28) 1993
9690_CR32
9690_CR37
E Seedhouse (9690_CR34) 2015
J Block (9690_CR7) 2011; 68
M Schenk (9690_CR31) 2014; 51
9690_CR45
SL Veldman (9690_CR44) 2006; 44
HMYC Mallikarachchi (9690_CR29) 2014; 51
HA Sodano (9690_CR38) 2004; 18
CG Wang (9690_CR46) 2010; 19
SM Khajamoinuddin (9690_CR22) 2021; 55
A Anssari-Benam (9690_CR2) 2022; 92
J Hu (9690_CR19) 2020; 210
J-C Thomas (9690_CR42) 2004; 42
M Latorre (9690_CR25) 2017; 89
E Seedhouse (9690_CR35) 2015
A Beukers (9690_CR6) 2005; 43
9690_CR12
H Du (9690_CR11) 2022; 33
9690_CR16
9690_CR13
F Jin (9690_CR20) 2022; 284
References_xml – volume: 42
  start-page: 1049
  year: 2004
  ident: 9690_CR42
  publication-title: Thin Walled Struct.
  doi: 10.1016/j.tws.2004.03.007
  contributor:
    fullname: J-C Thomas
– volume: 44
  start-page: 211
  year: 2006
  ident: 9690_CR44
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2006.01.003
  contributor:
    fullname: SL Veldman
– volume: 128
  start-page: 551
  year: 2016
  ident: 9690_CR40
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2016.08.021
  contributor:
    fullname: Q Tao
– volume: 135
  start-page: 1320
  year: 2009
  ident: 9690_CR10
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)ST.1943-541X.0000068
  contributor:
    fullname: WG Davids
– volume: 51
  start-page: 1811
  year: 2014
  ident: 9690_CR29
  publication-title: J. Spacecr. Rockets.
  doi: 10.2514/1.A32815
  contributor:
    fullname: HMYC Mallikarachchi
– volume: 68
  start-page: 9
  year: 2015
  ident: 9690_CR18
  publication-title: Int. J. Non Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2014.05.010
  contributor:
    fullname: CO Horgan
– volume-title: Bigelow aerospace
  year: 2015
  ident: 9690_CR35
  doi: 10.1007/978-3-319-05197-0
  contributor:
    fullname: E Seedhouse
– volume: 51
  start-page: 762
  year: 2014
  ident: 9690_CR31
  publication-title: J. Spacecr. Rockets.
  doi: 10.2514/1.A32598
  contributor:
    fullname: M Schenk
– ident: 9690_CR12
  doi: 10.21236/AD0607541
– volume: 55
  start-page: 3229
  year: 2021
  ident: 9690_CR22
  publication-title: J. Compos. Mater.
  doi: 10.1177/00219983211011528
  contributor:
    fullname: SM Khajamoinuddin
– volume-title: Analysis and design of inflatable aerospace structures
  year: 1993
  ident: 9690_CR28
  contributor:
    fullname: JA Main
– volume: 18
  start-page: 1
  issue: 12
  year: 2006
  ident: 9690_CR26
  publication-title: J. Adv. Sci.
  doi: 10.2978/jsas.18.1
  contributor:
    fullname: I Lee
– volume: 29
  start-page: 3681
  year: 2018
  ident: 9690_CR5
  publication-title: J. Intell. Mater. Syst. Struct.
  doi: 10.1177/1045389X18798951
  contributor:
    fullname: M Bashir
– ident: 9690_CR4
  doi: 10.1117/12.475159
– volume-title: Bigelow Aerospace
  year: 2015
  ident: 9690_CR34
  doi: 10.1007/978-3-319-05197-0
  contributor:
    fullname: E Seedhouse
– volume: 244
  start-page: 223
  year: 2016
  ident: 9690_CR43
  publication-title: Sens. Actuat Phys.
  doi: 10.1016/j.sna.2016.04.043
  contributor:
    fullname: D Upadrashta
– volume: 47
  start-page: 1507
  year: 2009
  ident: 9690_CR3
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2009.06.003
  contributor:
    fullname: KL Apedo
– volume: 26
  start-page: 617
  year: 2010
  ident: 9690_CR47
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-010-0348-1
  contributor:
    fullname: C-G Wang
– volume: 33
  start-page: 4214
  issue: 12
  year: 2022
  ident: 9690_CR11
  publication-title: Polym. Adv. Technol. Pat.
  doi: 10.1002/pat.5853
  contributor:
    fullname: H Du
– ident: 9690_CR45
  doi: 10.23919/EuCAP51087.2021.9411188
– ident: 9690_CR1
  doi: 10.2514/6.2002-1202
– volume: 232
  start-page: 111063
  year: 2021
  ident: 9690_CR49
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2021.111063
  contributor:
    fullname: J Wei
– ident: 9690_CR32
  doi: 10.2514/6.2016-1220
– volume: 53
  start-page: 1028
  year: 2016
  ident: 9690_CR23
  publication-title: J. Spacecr. Rockets.
  doi: 10.2514/1.A33488
  contributor:
    fullname: Y Kimoto
– volume: 13
  start-page: 399
  year: 2021
  ident: 9690_CR50
  publication-title: CEAS Space J.
  doi: 10.1007/s12567-021-00347-7
  contributor:
    fullname: JS Wright
– ident: 9690_CR37
  doi: 10.2514/6.2007-2333
– volume: 18
  start-page: 683
  year: 2004
  ident: 9690_CR38
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/S0888-3270(03)00081-5
  contributor:
    fullname: HA Sodano
– volume-title: Bigelow Aerospace
  year: 2015
  ident: 9690_CR33
  doi: 10.1007/978-3-319-05197-0
  contributor:
    fullname: E Seedhouse
– volume: 31
  start-page: 1807738
  year: 2019
  ident: 9690_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807738
  contributor:
    fullname: I Gouzman
– volume: 210
  start-page: 110292
  year: 2020
  ident: 9690_CR19
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110292
  contributor:
    fullname: J Hu
– volume: 111
  start-page: 220
  year: 2015
  ident: 9690_CR14
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.07.080
  contributor:
    fullname: M Gajewski
– volume: 284
  year: 2022
  ident: 9690_CR20
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2022.115211
  contributor:
    fullname: F Jin
– volume: 92
  start-page: 104443
  year: 2022
  ident: 9690_CR2
  publication-title: Eur. J. Mech. a. Solids
  doi: 10.1016/j.euromechsol.2021.104443
  contributor:
    fullname: A Anssari-Benam
– volume: 68
  start-page: 984
  year: 2011
  ident: 9690_CR7
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2010.09.005
  contributor:
    fullname: J Block
– ident: 9690_CR13
  doi: 10.2514/6.2000-1822
– ident: 9690_CR21
  doi: 10.1061/40479(204)8
– ident: 9690_CR8
  doi: 10.1109/AERO.2018.8396754
– volume: 43
  start-page: 461
  year: 2005
  ident: 9690_CR6
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2004.07.015
  contributor:
    fullname: A Beukers
– ident: 9690_CR27
  doi: 10.1117/12.2500091
– volume: 19
  start-page: 105019
  year: 2010
  ident: 9690_CR46
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/10/105019
  contributor:
    fullname: CG Wang
– volume: 51
  start-page: 113
  issue: 1
  year: 2020
  ident: 9690_CR36
  publication-title: Mech. Based Des. Struct. Mach.
  doi: 10.1080/15397734.2020.1833738
  contributor:
    fullname: H Sharma
– volume: 16
  start-page: 340
  year: 2007
  ident: 9690_CR52
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/16/2/012
  contributor:
    fullname: E-J Yoo
– volume: 49
  start-page: 31
  year: 2013
  ident: 9690_CR39
  publication-title: Int. J. Non Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2012.09.008
  contributor:
    fullname: G Tamadapu
– volume: 86
  start-page: 306
  issue: 858
  year: 1982
  ident: 9690_CR48
  publication-title: Aeronaut. J.
  doi: 10.1017/S000192400001914X
  contributor:
    fullname: J Webber
– ident: 9690_CR16
  doi: 10.4271/1999-01-5520
– volume: 89
  start-page: 14
  year: 2017
  ident: 9690_CR25
  publication-title: Int. J. Non Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2016.11.005
  contributor:
    fullname: M Latorre
– volume: 60
  start-page: 4278
  year: 2022
  ident: 9690_CR51
  publication-title: AIAA J.
  doi: 10.2514/1.J061439
  contributor:
    fullname: Z Yan
– ident: 9690_CR30
  doi: 10.2514/6.2004-1581
– ident: 9690_CR17
  doi: 10.2514/6.2002-1593
– ident: 9690_CR24
  doi: 10.2514/6.2017-5365
– volume: 1
  start-page: 1652
  year: 1963
  ident: 9690_CR9
  publication-title: AIAA J.
  doi: 10.2514/3.1873
  contributor:
    fullname: RL Comer
SSID ssj0030188
Score 2.3537757
Snippet The gossamer space structures can be stowed effortlessly because of a lack of out-of-plane stiffness, but structural strength is needed on partial or complete...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 545
SubjectTerms Characterization and Evaluation of Materials
Classical Mechanics
Curve fitting
Design parameters
Engineering
Engineering Design
Gossamer structures
Inflatable space structures
Kapton (trademark)
Polyimide resins
Solid Mechanics
Stiffness
Structural strength
Test chambers
Title Numerical and experimental investigation of self-rigidizable Kapton-SMA-based boom
URI https://link.springer.com/article/10.1007/s10999-023-09690-5
https://www.proquest.com/docview/3056206451
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5Bu8DAG1EolQc2MIodO4nHClEqqnYAKpUpil8SoqQVbRd-Pc5LKa-BOYmlnM--73T3fQdwQa2NqHQ7YLUKMFPM4EgZi0MqJTdE6iRn8Q9HQX_M7id8UvO482b3qiKZX9RrXLecME997FC38DDfhKaLPT5vQLN79zy4rS5g57L5uEmXmQhMXBJWcmV-X-VrPKpB5re6aB5uervwVJF2ii6T1-vVUl6rj58ajv_5kz3YKeEn6hb-sg8bJj2A7TVRwkN4GK2KKs4UJalG6yMA0EutyjFL0cyihZlanM3W0ll32NSgQTLPhhI_Drs4C5AaORT_dgTj3u3TTR-XkxewoqG3xIRJL1KMG04F4w5RqogxI7UMvFBYEXlaaOkrQwwJolAq44VJGDrkwZT2iKT-MTTSWWpOAIWJYJpQqYTLJWUk3cc-FwljyhISWK8Fl5X943khsBHXUsqZpWJnqTi3VMxb0K62KC4P2yLOsiCa6e6RFlxVJq8f_73a6f9eP4Mt6iBN0SjWhsbyfWXOHSRZyk7pgh3YHNPuJ2lV11c
link.rule.ids 315,786,790,27946,27947,41105,41547,42174,42616,52135,52258
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oHNSDbyOK2oM3LdmW7qNHYkCUx0EhwdNm-0qMuBCBi7_e7isg0QPn3W26M9PON5mZbwBuqTEBFVYDRkkPM8k0DqQ22KdCuJoIFaVd_L2-1x6y55E7ypvCZkW1e5GSTG_qlWa3tGOe1rGF3dzB7jaUWYKoS1BuPL51msUNbG02nTdpQxOOiY3C8maZv1f57ZCWKHMtMZr6m9YBDIudZmUmH7XFXNTk9xqJ46a_cgj7OQBFjcxijmBLx8ewt0JLeAIv_UWWxxmjKFZodQgAel_yckxiNDFopscGJ9O1VFIfNtaoE02TscSvvQZOXKRCFsd_nsKw1Rw8tHE-ewFL6jtzTJhwAslc7VLOXIspZcCYFkp4js8NDxzFlahLTTTxAl9I7fiR71vswaRyiKD1MyjFk1ifA_IjzhShQnIbTYpA2I_rLo8Yk4YQzzgVuCsUEE4zio1wSaacSCq0kgpTSYVuBaqFjsL8uM3CJA6iCfMeqcB9IfLl4_9Xu9js9RvYaQ963bD71O9cwi61ACcrG6tCaf610FcWoMzFdW6PPxWJ2kI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAc2BGFAj5wA0Ps2kl8rIBSKFSIRYJTFG8SoqQVTS98Pc6mFgQHxDmJlcyMM2_keW8ADqi1IZXOA1YrHzPFDA6VsTigUnJDpI5zFv9Nz-88sqsn_jTF4s-73asjyYLTkKk0JenJUNuTKeJbzp6nTewguPAwn4U55jIZr8Fc6-K5e179jV385rMnXZkiMHEVWUmc-XmVr8lpgji_HZLmuae9DHH11kXLyevxOJXH6uOboON_PmsFlkpgilpFJK3CjEnWYHFKrnAd7nrj4nynj-JEo-nhAOhlotcxSNDAopHpW5xN3dJZ31jfoG48zMYV39-0cJY6NXL4_m0DHtvnD6cdXM5kwIoGXooJk16oGDecCsYd1lQhY0Zq6XuBsCL0tNCyqQwxxA8DqYwXxEHgMAlT2iOSNjehlgwSswUoiAXThEolXJUpQ-kebnIRM6YsIb716nBYOSMaFtIb0URkObNU5CwV5ZaKeB0alb-ichuOoqw-opkiH6nDUWX-yeXfV9v-2-37MH971o6uL3vdHVigDvcU3WQNqKXvY7PrcEsq98rQ_AS8auMd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+and+experimental+investigation+of+self-rigidizable+Kapton-SMA-based+boom&rft.jtitle=International+journal+of+mechanics+and+materials+in+design&rft.au=Rastogi+Vikas&rft.au=Upadhyay%2C+S+H&rft.au=Singh%2C+Kripa+Sankar&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1569-1713&rft.eissn=1573-8841&rft.volume=20&rft.issue=3&rft.spage=545&rft.epage=569&rft_id=info:doi/10.1007%2Fs10999-023-09690-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-1713&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-1713&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-1713&client=summon