Numerical and experimental investigation of self-rigidizable Kapton-SMA-based boom

The gossamer space structures can be stowed effortlessly because of a lack of out-of-plane stiffness, but structural strength is needed on partial or complete out-gassing to maintain their deployed state. This study demonstrates a novel approach to producing a self-maintaining shape ability of an in...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanics and materials in design Vol. 20; no. 3; pp. 545 - 569
Main Authors Rastogi, Vikas, Upadhyay, S. H., Singh, Kripa Sankar
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The gossamer space structures can be stowed effortlessly because of a lack of out-of-plane stiffness, but structural strength is needed on partial or complete out-gassing to maintain their deployed state. This study demonstrates a novel approach to producing a self-maintaining shape ability of an inflatable cylindrical boom using heat-actuated SMA wires when the inflation gas is vented out from the assembly after complete deployment. Kapton-based and Kapton-SMA-based booms are analyzed numerically for bending stiffness under inflation and no-inflation pressure, followed by experimental validation. At this end, a customized heat test chamber is developed to conduct the required experiments. Furthermore, a parametric study is also performed to find the effect of materials and design parameters on the boom’s stiffness. Before all, the non-linear behavior of double-layered laminated Kapton is found by curve fitting of stretch test data with the optimized different material model parameters to find the best-fitted material model under the hyperelastic materials category. The study helps to find the membrane behavior and rigidization of the inflatable boom in a reversible manner.
ISSN:1569-1713
1573-8841
DOI:10.1007/s10999-023-09690-5