A Pólya–Vinogradov inequality for short character sums

In this paper, we obtain a variation of the Pólya–Vinogradov inequality with the sum restricted to a certain height. Assume $\chi $ to be a primitive character modulo q, $ \epsilon>0$ and $N\le q^{1-\gamma }$ , with $0\le \gamma \le 1/3$ . We prove that $$ \begin{align*} |\sum_{n=1}^N \chi(n) |\l...

Full description

Saved in:
Bibliographic Details
Published inCanadian mathematical bulletin Vol. 64; no. 4; pp. 906 - 910
Main Author Bordignon, Matteo
Format Journal Article
LanguageEnglish
Published Canada Canadian Mathematical Society 01.12.2021
Cambridge University Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we obtain a variation of the Pólya–Vinogradov inequality with the sum restricted to a certain height. Assume $\chi $ to be a primitive character modulo q, $ \epsilon>0$ and $N\le q^{1-\gamma }$ , with $0\le \gamma \le 1/3$ . We prove that $$ \begin{align*} |\sum_{n=1}^N \chi(n) |\le c (\tfrac{1}{3} -\gamma+\epsilon )\sqrt{q}\log q \end{align*} $$ with $c=2/\pi ^2$ if $\chi $ is even and $c=1/\pi $ if $\chi $ is odd. The result is based on the work of Hildebrand and Kerr.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0008-4395
1496-4287
DOI:10.4153/S0008439520000934