An electrochemical aptasensor for detection of carbofuran using gold nanoparticles decorated hierarchical porous carbon as an effective sensing platform
In this study, a novel electrochemical aptasensor for carbofuran (CBF) detection is prepared by gold nanoparticles decorated hierarchical porous carbon (Au@HPC). The prepared carbon materials show a three-dimensional hierarchical structure with a large specific surface area and a highly developed po...
Saved in:
Published in | Chemosphere (Oxford) Vol. 341; p. 140033 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, a novel electrochemical aptasensor for carbofuran (CBF) detection is prepared by gold nanoparticles decorated hierarchical porous carbon (Au@HPC). The prepared carbon materials show a three-dimensional hierarchical structure with a large specific surface area and a highly developed porous structure. Aptamers loading significantly improves when gold nanoparticles are embedded into the hierarchical porous carbon skeleton. Besides, Au@HPC modified electrode exhibits a large electroactive area and excellent electrochemical conductivity, serving as a promising platform for highly sensitive and selective electrochemical detection of CBF. The developed CBF electrochemical aptasensor shows a wide linear from 1.0 to 100000 pg/L with a detection limit of 0.5 pg/L, demonstrating an extraordinary sensitivity compared to other sensors for CBF detection. Additionally, the designed aptasensor was used to monitor the CBF in vegetable samples, with a recovery range from 98.4% to 104.8%. The results coincide with the standard test method, revealing its practicability in the food safety analysis.
[Display omitted]
•A gold nanoparticles decorated hierarchical porous carbon (Au@HPC) was prepared and used to construct electrochemical aptasensor firstly.•Au@HPC showed excellent electrochemical performance and aptamers fixation ability.•The developed aptasensor showed much better analytical properties toward carbofuran compared with previously reported sensors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2023.140033 |