QUANTUM APPROXIMATION ON ANISOTROPIC SOBOLEV AND HÖLDER-NIKOLSKII CLASSES

We estimate the quantum query error of approximation to functions from the anisotropic Sobolev class ℬ ( W p r ( [ 0 ,   1 ] d ) ) and the Hölder-Nikolskii class ℬ ( H p r ( [ 0 ,   1 ] d ) ) in theLq ([0, 1] d ) norm for all 1 ≤p, q≤ ∞. It turns out that for the class ℬ ( W p r ( [ 0 ,   1 ] d ) )...

Full description

Saved in:
Bibliographic Details
Published inTaiwanese journal of mathematics Vol. 16; no. 1; pp. 71 - 88
Main Author Ye, Peixin
Format Journal Article
LanguageEnglish
Published Mathematical Society of the Republic of China 01.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We estimate the quantum query error of approximation to functions from the anisotropic Sobolev class ℬ ( W p r ( [ 0 ,   1 ] d ) ) and the Hölder-Nikolskii class ℬ ( H p r ( [ 0 ,   1 ] d ) ) in theLq ([0, 1] d ) norm for all 1 ≤p, q≤ ∞. It turns out that for the class ℬ ( W p r ( [ 0 ,   1 ] d ) ) (r∈ ℕ d ), whenp<q, the quantum algorithms can essentially improve the rate of convergence of classical deterministic and randomized algorithms; while for the class ℬ ( H p r ( [ 0 ,   1 ] d ) ) and ℬ ( W p r ( [ 0 ,   1 ] d ) )   ( r ∈ ℝ + d ) , whenp≥q, the optimal convergence rate is the same for all three settings. 2010Mathematics Subject Classification: 41A63, 65D15, 65Y20. Key words and phrases: Quantum approximation, Anisotropic classes, Minimal query error.
ISSN:1027-5487
2224-6851
DOI:10.11650/twjm/1500406528