Obstacle negotiation analysis of track-legged robot based on terramechanics

Purpose This paper aims to present a new method to analyze the robot’s obstacle negotiation based on the terramechanics, where the terrain physical parameters, the sinkage and the slippage of the robot are taken into account, to enhance the robot’s trafficability. Design/methodology/approach In this...

Full description

Saved in:
Bibliographic Details
Published inIndustrial robot Vol. 48; no. 6; pp. 812 - 822
Main Authors Hongbiao, Zhu, Liu, Yueming, Wang, Weidong, Du, Zhijiang
Format Journal Article
LanguageEnglish
Published Bedford Emerald Group Publishing Limited 16.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose This paper aims to present a new method to analyze the robot’s obstacle negotiation based on the terramechanics, where the terrain physical parameters, the sinkage and the slippage of the robot are taken into account, to enhance the robot’s trafficability. Design/methodology/approach In this paper, terramechanics is used in motion planning for all-terrain obstacle negotiation. First, wheel/track-terrain interaction models are established and used to analyze traction performances in different locomotion modes of the reconfigurable robot. Next, several key steps of obstacle-climbing are reanalyzed and the sinkage, the slippage and the drawbar pull are obtained by the models in these steps. In addition, an obstacle negotiation analysis method on loose soil is proposed. Finally, experiments in different locomotion modes are conducted and the results demonstrate that the model is more suitable for practical applications than the center of gravity (CoG) kinematic model. Findings Using the traction performance experimental platform, the relationships between the drawbar pull and the slippage in different locomotion modes are obtained, and then the traction performances are obtained. The experimental results show that the relationships obtained by the models are in good agreement with the measured. The obstacle-climbing experiments are carried out to confirm the availability of the method, and the experimental results demonstrate that the model is more suitable for practical applications than the CoG kinematic model. Originality/value Comparing with the results without considering Terramechanics, obstacle-negotiation analysis based on the proposed track-terrain interaction model considering Terramechanics is much more accurate than without considering Terramechanics.
ISSN:0143-991X
1758-5791
DOI:10.1108/IR-11-2020-0245