Predicting Rail Corrugation Based on Convolutional Neural Networks Using Vehicle's Acceleration Measurements
This paper presents a deep learning approach for predicting rail corrugation based on on-board rolling-stock vertical acceleration and forward velocity measurements using One-Dimensional Convolutional Neural Networks (CNN-1D). The model's performance is examined in a 1:10 scale railway system a...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 14; p. 4627 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a deep learning approach for predicting rail corrugation based on on-board rolling-stock vertical acceleration and forward velocity measurements using One-Dimensional Convolutional Neural Networks (CNN-1D). The model's performance is examined in a 1:10 scale railway system at two different forward velocities. During both the training and test stages, the CNN-1D produced results with mean absolute percentage errors of less than 5% for both forward velocities, confirming its ability to reproduce the corrugation profile based on real-time acceleration and forward velocity measurements. Moreover, by using a Gradient-weighted Class Activation Mapping (Grad-CAM) technique, it is shown that the CNN-1D can distinguish various regions, including the transition from damaged to undamaged regions and one-sided or two-sided corrugated regions, while predicting corrugation. In summary, the results of this study reveal the potential of data-driven techniques such as CNN-1D in predicting rails' corrugation using online data from the dynamics of the rolling-stock, which can lead to more reliable and efficient maintenance and repair of railways. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24144627 |