Numerical Analysis of Pneumatic Regenerative Braking System

— Aimed at understanding the pneumatic regenerative braking system, one simulation model was established based on the basic parameters of the regenerative braking system and validated based on an experimental test bed. Then the effects of air compressor displacement and accumulator volume on the bra...

Full description

Saved in:
Bibliographic Details
Published inAutomatic control and computer sciences Vol. 58; no. 1; pp. 11 - 22
Main Author Zhu, Yongcun
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:— Aimed at understanding the pneumatic regenerative braking system, one simulation model was established based on the basic parameters of the regenerative braking system and validated based on an experimental test bed. Then the effects of air compressor displacement and accumulator volume on the braking energy recovery process were analyzed. For the analysis, the accumulator volume is set as 12 L, the maximum pressure is set as 3 MPa, the air compressor displacement is set as 560 cc r –1 , and the total mass of the vehicle is 1699 kg. The analysis results show that the vehicle needs more than 100 s to stop while the regeneration efficiency is 5.7% when the initial speed is set as 120 km h –1 and the pneumatic regenerative braking system is applied. Further analysis showed that the air compressor displacement has a great influence on the regenerative braking system. The braking distance increases with the increasing of the accumulator volume while the energy regeneration efficiency reduces with the increasing of the accumulator volume. The braking distance increases with the increasing of accumulator volume. But it has less effect on the regeneration efficiency which can be even ignored.
ISSN:0146-4116
1558-108X
DOI:10.3103/S0146411624010127