Quantum Encoding and Entanglement in Terms of Phase Operators Associated with Harmonic Oscillator

Realization of qudit quantum computation has been presented in terms of number operator and phase operators associated with one-dimensional harmonic oscillator and it has been demonstrated that the representations of generalized Pauli group, viewed in harmonic oscillator operators, allow the qudits...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of theoretical physics Vol. 55; no. 10; pp. 4393 - 4405
Main Authors Singh, Manu Pratap, Rajput, B. S.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2016
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Realization of qudit quantum computation has been presented in terms of number operator and phase operators associated with one-dimensional harmonic oscillator and it has been demonstrated that the representations of generalized Pauli group, viewed in harmonic oscillator operators, allow the qudits to be explicitly encoded in such systems. The non-Hermitian quantum phase operators contained in decomposition of the annihilation and creation operators associated with harmonic oscillator have been analysed in terms of semi unitary transformations (SUT) and it has been shown that the non-vanishing analytic index for harmonic oscillator leads to an alternative class of quantum anomalies. Choosing unitary transformation and the Hermitian phase operator free from quantum anomalies, the truncated annihilation and creation operators have been obtained for harmonic oscillator and it has been demonstrated that any attempt of removal of quantum anomalies leads to absence of minimum uncertainty.
ISSN:0020-7748
1572-9575
DOI:10.1007/s10773-016-3062-3