Experimental Study of the Rate of Methane Hydrate Formation: Influence of Simultaneous Utilization of Tetra n-Butylammonium Fluoride and Sodium Dodecyl Sulfate
Gas hydrates have the potential for many industrial applications such as gas storage and transportation. However, the low rate of hydrate formation process is one of the main barriers to the industrialization of this technology. The effect of tetra n-butylammonium fluoride (TBAF) and sodium dodecyl...
Saved in:
Published in | Solid fuel chemistry Vol. 57; no. Suppl 1; pp. S35 - S41 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.12.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Gas hydrates have the potential for many industrial applications such as gas storage and transportation. However, the low rate of hydrate formation process is one of the main barriers to the industrialization of this technology. The effect of tetra n-butylammonium fluoride (TBAF) and sodium dodecyl sulfate (SDS) on the rate of methane uptake in the process of gas hydrate formation is investigated in this research. A stirred batch cell with an effective volume of 169 cm3 was employed to perform the experiments. The temperature of the cell was adjusted at 278.15 K at initial pressures of 6 and 8 MPa. The results of the experiments showed that the addition of 2 and 4 wt% TBAF increases the average rate of methane uptake within 50 min of the gas hydrate formation process. The utilization of SDS with a concentration of 400 ppm, remarkably, increases the rate of methane uptake, compared to pure water. Simultaneous utilization of TBAF and SDS showed a negative effect on the methane uptake, compared to the aqueous solution of SDS. |
---|---|
ISSN: | 0361-5219 1934-8029 |
DOI: | 10.3103/S0361521923070054 |