Splitting positive sets

We introduce a class of cardinal invariants s ℐ for ideals ℐ on ω which arise naturally from the FinBW property introduced by Filipów et al. (2007). Let ℐ be an ideal on ω . Define s I = min { ∣ X ∣ : X ⊂ [ ω ] ω , ∀ B ∈ I + , ∃ x ∈ X ( B ∖ x , B ∩ x ∈ [ ω ] ω ) } . We characterize them and compare...

Full description

Saved in:
Bibliographic Details
Published inScience China. Mathematics Vol. 66; no. 11; pp. 2457 - 2470
Main Authors Zhang, Hang, He, Jialiang, Zhang, Shuguo
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We introduce a class of cardinal invariants s ℐ for ideals ℐ on ω which arise naturally from the FinBW property introduced by Filipów et al. (2007). Let ℐ be an ideal on ω . Define s I = min { ∣ X ∣ : X ⊂ [ ω ] ω , ∀ B ∈ I + , ∃ x ∈ X ( B ∖ x , B ∩ x ∈ [ ω ] ω ) } . We characterize them and compare them with other cardinal invariants of the continuum.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-022-2066-x