Nonlinear Gravitational Waves and Atmospheric Instability

— This is an outline of the main results of the study of dust devils (a type of atmospheric vortices) with a focus on the mechanism of vortex generation in an unstable stratified atmosphere. In the approximation of ideal hydrodynamics, a new nonlinear model of the generation of convective motions an...

Full description

Saved in:
Bibliographic Details
Published inIzvestiya. Atmospheric and oceanic physics Vol. 54; no. 10; pp. 1423 - 1429
Main Authors Onishchenko, O. G., Pokhotelov, O. A., Astafieva, N. M.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:— This is an outline of the main results of the study of dust devils (a type of atmospheric vortices) with a focus on the mechanism of vortex generation in an unstable stratified atmosphere. In the approximation of ideal hydrodynamics, a new nonlinear model of the generation of convective motions and dust devils in an unstable stratified atmosphere has been developed. Using nonlinear equations for internal gravity waves, the model of generation of convective cell plumes has been investigated in the axially symmetric approximation. It has been shown that, in a convectively unstable atmosphere with large-scale seed vorticity, the plumes extremely rapidly generate small-scale intense vertical vortices. The structure of radial, vertical, and toroidal velocity components in these vortices has been investigated. The structure of vertical vorticity and toroidal velocity in vortex areas that are limited by radius has been examined.
ISSN:0001-4338
1555-628X
DOI:10.1134/S0001433818100079