Multicast Grooming Algorithm in Waveband Switching Optical Networks

In optical Wavelength-Division-Multiplexing (WDM) networks, multicast becomes more and more popular to provide high-speed communication between one point and multiple points. At the same time, the ports of Optical Cross-Connect (OXC) are greatly enhanced with the increasing number of wavelengths in...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 28; no. 19; pp. 2856 - 2864
Main Authors Guo, Lei, Wang, Xingwei, Cao, Jiannong, Hou, Weigang, Pang, Lan
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In optical Wavelength-Division-Multiplexing (WDM) networks, multicast becomes more and more popular to provide high-speed communication between one point and multiple points. At the same time, the ports of Optical Cross-Connect (OXC) are greatly enhanced with the increasing number of wavelengths in fibers, and then the waveband switching technique is proposed to save the ports and reduce the cost of OXC. However, current waveband grooming algorithms are all limited in unicast. To achieve the multicast communication and meanwhile save the ports of OXC, we need to solve the multicast grooming, routing and wavelength/waveband assignment problem which is the HP-hard. In this paper, we propose a heuristic algorithm named Integrated Multicast Waveband Grooming (IMWG) based on Multicast Layered Auxiliary Graph (MLAG) that includes a Virtual Topology Layer (VTL) and multiple Waveband-Plane Layers (WPLs) to support the single-hop, multi-hop and hybrid multicast waveband grooming. For each demand, IMWG first computes a single-hop or multi-hop grooming waveband-tree on VTL. If the grooming waveband-tree cannot be found on VTL, IMWG computes a new waveband-tree on WPL. If the new waveband-tree cannot be found on WPL, IMWG computes a hybrid grooming waveband-tree on MLAG. Simulation results show that, compared with other algorithms, IMWG is able to obtain better performances.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2010.2068036