Influence of Minor Aluminum Addition on the Superplastic Deformation of a Microduplex Cu-Zn Alloy

High residual porosity in superplastically deformed brass carries the risk of reducing the mechanical properties. Multicomponent brasses demonstrate lower residual porosity, associated with a lower grain size and more effective accommodation of grain boundary sliding. In this paper, the microstructu...

Full description

Saved in:
Bibliographic Details
Published inPhysical mesomechanics Vol. 26; no. 5; pp. 533 - 541
Main Authors Yakovtseva, O. A., Kaboyi, P. K., Irzhak, A. V., Mikhaylovskaya, A. V.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.10.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:High residual porosity in superplastically deformed brass carries the risk of reducing the mechanical properties. Multicomponent brasses demonstrate lower residual porosity, associated with a lower grain size and more effective accommodation of grain boundary sliding. In this paper, the microstructural evolution of the surface and bulk structure of the binary brass and aluminum-bearing brass during steady-state superplastic deformation is compared. After superplastic deformation, dislocation pile-ups and dislocation walls are revealed in the α grains of both alloys, indicating the activation of the dislocation slip/creep mechanism. It is shown that aluminum reduces the contribution of grain boundary sliding along the phase boundaries from ~75 to ~30% and causes strain localization in the β-phase region with the formation of ultrafine grains with the size below ~300 nm as a result of dynamic recrystallization. Alloying with 0.4% Al reduces the flow stress by 20%, increases the relative elongation by a factor of 1.5, and decreases the fraction of residual porosity by a factor of 3. This leads to a much lower loss of room temperature strength in superplastically deformed alloys.
ISSN:1029-9599
1990-5424
DOI:10.1134/S1029959923050065