Existence and stability of circular orbits in time-dependent spherically symmetric spacetimes

For a general spherically-symmetric four-dimensional metric the notion of “circularity” of a family of equatorial geodesic trajectories is defined in geometrical terms. The main object turns out to be the angular-momentum function J obeying a consistency condition involving the mean extrinsic curvat...

Full description

Saved in:
Bibliographic Details
Published inGeneral relativity and gravitation Vol. 51; no. 3; pp. 1 - 22
Main Author Graf, Wolfgang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For a general spherically-symmetric four-dimensional metric the notion of “circularity” of a family of equatorial geodesic trajectories is defined in geometrical terms. The main object turns out to be the angular-momentum function J obeying a consistency condition involving the mean extrinsic curvature of the submanifold containing the geodesics. The analysis of linear stability is reduced to a simple dynamical system. For static metrics the existence of such geodesics is given when J 2 > 0 , and ( J 2 ) ′ > 0 for stability. The formalism is then applied to the Schwarzschild–de Sitter solution, both in its static and in its time-dependent cosmological version, as well to the Kerr–de Sitter solution. In addition we present an approximate solution to a cosmological metric containing a massive source and solving the Einstein field equation for a massless scalar.
ISSN:0001-7701
1572-9532
DOI:10.1007/s10714-018-2427-8