Application of Cadherin cRNA Probes in Brains of Alzheimer’s Disease Mouse Model
The cadherin superfamily molecules, functioning as cell adhesion molecules, are recognized to play roles in both physiological and pathological processes. The cadherin-based adherent junction (CAJ) is believed to interact with presenilin-1 (PS-1), suggesting that disruptions in CAJ structures might...
Saved in:
Published in | Molecular biology (New York) Vol. 58; no. 3; pp. 504 - 513 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The cadherin superfamily molecules, functioning as cell adhesion molecules, are recognized to play roles in both physiological and pathological processes. The cadherin-based adherent junction (CAJ) is believed to interact with presenilin-1 (PS-1), suggesting that disruptions in CAJ structures might contribute to neurodegeneration, potentially leading to Alzheimer’s Disease (AD). Yet, the specific expression patterns of cadherin superfamily mRNA remain somewhat ambiguous. This research utilized in situ hybridization (ISH) to examine the expression and localization of cadherin mRNA in AD mouse model brains. Long cRNA probes targeting cadherin revealed endogenous mRNA expression in brain sections. Interestingly, senile plaques in the AD mouse brain were also bound to these probes. This binding, however, did not exclusively denote cadherin mRNA, as ISH detected both antisense and sense cRNA probes. Our data suggest that although antisense cRNA probes effectively detected cadherin mRNA expression in AD brain cells, their association with senile plaques may not specifically indicate cadherin mRNA expression. |
---|---|
ISSN: | 0026-8933 1608-3245 |
DOI: | 10.1134/S0026893324700134 |