Symmetry of Positive Solutions for Fully Nonlinear Nonlocal Systems

In this paper, we consider the nonlinear systems involving fully nonlinear nonlocal operators { F α ( u ( x ) ) = v p ( x ) + k 1 ( x ) u r ( x ) , x ∈ ℝ N , G β ( v ( x ) ) = u q ( x ) + k 2 ( x ) v s ( x ) , x ∈ ℝ N and { F α ( u ( x ) ) = v p ( x ) | x | a + u r ( x ) | x | b , x ∈ ℝ N \ { 0 } ,...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of Mathematics Vol. 19; no. 2; pp. 225 - 249
Main Authors Luo, Linfeng, Zhang, Zhengce
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we consider the nonlinear systems involving fully nonlinear nonlocal operators { F α ( u ( x ) ) = v p ( x ) + k 1 ( x ) u r ( x ) , x ∈ ℝ N , G β ( v ( x ) ) = u q ( x ) + k 2 ( x ) v s ( x ) , x ∈ ℝ N and { F α ( u ( x ) ) = v p ( x ) | x | a + u r ( x ) | x | b , x ∈ ℝ N \ { 0 } , G β ( v ( x ) ) = u q ( x ) | x | c + v s ( x ) | x | d , x ∈ ℝ N \ { 0 } , where k i ( x ) ≥ 0, i = 1, 2, 0 < α , β < 2, p , q , r , s > 1, a , b , c , d > 0. By proving a narrow region principle and other key ingredients for the above systems and extending the direct method of moving planes for the fractional p -Laplacian, we derive the radial symmetry of positive solutions about the origin. During these processes, we estimate the local lower bound of the solutions by constructing sub-solutions.
ISSN:2731-8648
1673-3452
2731-8656
1673-3576
DOI:10.1007/s11464-021-0377-z