Steady state diffusion in tubular structures: Assessment of one-dimensional models

Steady-state diffusion in long axisymmetric structures is considered. The goal is to assess one-dimensional approximations by comparing them with axisymmetric eigenfunction expansions. Two problems are considered in detail: a finite tube with one end that is partly absorbing and partly reflecting; a...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of applied mathematics Vol. 34; no. 2; pp. 262 - 279
Main Authors MARTIN, P. A., SKVORTSOV, A. T.
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 01.04.2023
Subjects
Online AccessGet full text
ISSN0956-7925
1469-4425
DOI10.1017/S0956792522000110

Cover

More Information
Summary:Steady-state diffusion in long axisymmetric structures is considered. The goal is to assess one-dimensional approximations by comparing them with axisymmetric eigenfunction expansions. Two problems are considered in detail: a finite tube with one end that is partly absorbing and partly reflecting; and two finite coaxial tubes with different cross-sectional radii joined together abruptly. Both problems may be modelled using effective boundary conditions, containing a parameter known as the trapping rate. We show that trapping rates depend on the lengths of the finite tubes (and that they decay slowly as these lengths increase) and we show how trapping rates are related to blockage coefficients, which are well known in the context of potential flow along tubes of infinite length.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0956-7925
1469-4425
DOI:10.1017/S0956792522000110