Wide Bandgap Devices in Electric Vehicle Converters: A Performance Survey
This paper introduces a unique quantified study about using low-losses fast-switching wide bandgap (WBG) devices, i.e., gallium nitride (GaN) and silicon carbide (SiC), over traditional Silicon (Si) devices in the switching of dc/dc converters, focusing on electric vehicles' (EVs) machine drive...
Saved in:
Published in | Canadian journal of electrical and computer engineering Vol. 41; no. 1; pp. 45 - 54 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE Canada
01.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0840-8688 |
DOI | 10.1109/CJECE.2018.2807780 |
Cover
Loading…
Abstract | This paper introduces a unique quantified study about using low-losses fast-switching wide bandgap (WBG) devices, i.e., gallium nitride (GaN) and silicon carbide (SiC), over traditional Silicon (Si) devices in the switching of dc/dc converters, focusing on electric vehicles' (EVs) machine drive and battery charger. A detailed model of the power train of a Nissan Leaf was developed in PSIM software, with WBG semiconductors' capability. The model was simulated one time using GaN semiconductors and another time using SiC devices. Simulation results are quantified and a comparison between different semiconductors in terms of total losses and efficiency is presented. The developed PSIM model can also be extended to other EVs like Chevy Volt. A proof of concept prototype for a Nissan Leaf dc/dc converter was built in the laboratory and results were collected. Componentwise experimental results are presented and their correlation with simulation findings is demonstrated. In addition, experimental results of the overall power train test bench are found to be matched with the simulation results on a system level as well. |
---|---|
AbstractList | This paper introduces a unique quantified study about using low-losses fast-switching wide bandgap (WBG) devices, i.e., gallium nitride (GaN) and silicon carbide (SiC), over traditional Silicon (Si) devices in the switching of dc/dc converters, focusing on electric vehicles' (EVs) machine drive and battery charger. A detailed model of the power train of a Nissan Leaf was developed in PSIM software, with WBG semiconductors' capability. The model was simulated one time using GaN semiconductors and another time using SiC devices. Simulation results are quantified and a comparison between different semiconductors in terms of total losses and efficiency is presented. The developed PSIM model can also be extended to other EVs like Chevy Volt. A proof of concept prototype for a Nissan Leaf dc/dc converter was built in the laboratory and results were collected. Componentwise experimental results are presented and their correlation with simulation findings is demonstrated. In addition, experimental results of the overall power train test bench are found to be matched with the simulation results on a system level as well. |
Author | Attia, Yosra Abdelrahman, Ahmed S. Youssef, Mohamed Z. Erdem, Zekiye |
Author_xml | – sequence: 1 givenname: Ahmed S. surname: Abdelrahman fullname: Abdelrahman, Ahmed S. email: ahmed.abdelrahman@uoit.ca organization: Department of Electrical, Computer and Software Engineering, Power Electronics and Drives Applications Laboratory, School of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada – sequence: 2 givenname: Zekiye surname: Erdem fullname: Erdem, Zekiye email: zekiye.erdem@uoit.ca organization: Department of Electrical, Computer and Software Engineering, Power Electronics and Drives Applications Laboratory, School of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada – sequence: 3 givenname: Yosra surname: Attia fullname: Attia, Yosra email: yosra.attia@uoit.ca organization: Department of Electrical, Computer and Software Engineering, Power Electronics and Drives Applications Laboratory, School of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada – sequence: 4 givenname: Mohamed Z. orcidid: 0000-0002-8420-2472 surname: Youssef fullname: Youssef, Mohamed Z. email: mohamed.youssef@uoit.ca organization: Department of Electrical, Computer and Software Engineering, Power Electronics and Drives Applications Laboratory, School of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada |
BookMark | eNp90L1OwzAYhWEPRaIFbgAW30DK5ziJHbYSAhRVAom_MfLPZzBKk8oOlXr3UFoxMDCd6TnDOyGjru-QkFMGU8agPK_u6qqepsDkNJUghIQRGYPMIJGFlIdkEuMHAJeQZ2Myf_UW6aXq7Jta0Stce4OR-o7WLZoheENf8N2bFmnVd2sMA4Z4QWf0AYPrw1J1BunjZ1jj5pgcONVGPNnvEXm-rp-q22RxfzOvZovEpIUYEsfBSlMWWhvNU-mKAoUUumRcWeQ6Z6CFyDQykZlMl2UunAOwhXK24FZYfkTk7teEPsaArjF-UIPvuyEo3zYMmm2G5idDs83Q7DN80_QPXQW_VGHzPzrbIY-Iv0DyjOWs5F-UYm0v |
CODEN | CJEEEL |
CitedBy_id | crossref_primary_10_1016_j_rser_2019_109336 crossref_primary_10_3390_electronics12204295 crossref_primary_10_1016_j_est_2022_104212 crossref_primary_10_1109_TIA_2019_2916302 crossref_primary_10_1016_j_rser_2025_115419 crossref_primary_10_3390_en13205351 crossref_primary_10_1016_j_rineng_2025_104403 crossref_primary_10_2116_analsci_18P542 crossref_primary_10_1109_TPEL_2019_2954716 crossref_primary_10_3390_electronics12041063 crossref_primary_10_3390_en16010129 crossref_primary_10_1016_j_seta_2023_103512 crossref_primary_10_1109_CJECE_2020_2967129 crossref_primary_10_1088_1757_899X_623_1_012005 crossref_primary_10_1002_er_6683 crossref_primary_10_3390_en11102798 crossref_primary_10_7567_1347_4065_ab07a6 crossref_primary_10_1002_er_8581 crossref_primary_10_1109_TPEL_2022_3179829 crossref_primary_10_3390_electronics12132993 crossref_primary_10_3390_en15239172 crossref_primary_10_1007_s43236_024_00849_7 crossref_primary_10_1088_1361_6528_ac0d81 crossref_primary_10_3390_s23146481 crossref_primary_10_1109_ACCESS_2020_2986972 crossref_primary_10_1051_e3sconf_202455201145 crossref_primary_10_3390_en14123477 crossref_primary_10_3390_mi13122133 crossref_primary_10_1541_ieejjia_22006323 crossref_primary_10_1016_j_rser_2019_109264 crossref_primary_10_1063_5_0100426 crossref_primary_10_1016_j_matpr_2020_02_916 crossref_primary_10_1016_j_prime_2024_100574 crossref_primary_10_1109_TPEL_2024_3448201 crossref_primary_10_1016_j_jpowsour_2019_227489 crossref_primary_10_1109_TPEL_2020_3009008 crossref_primary_10_1109_TPEL_2022_3188747 crossref_primary_10_3390_batteries9020099 crossref_primary_10_1002_cta_3313 crossref_primary_10_1109_TPEL_2024_3368519 crossref_primary_10_1038_s41598_024_55426_6 |
Cites_doi | 10.1109/TPEL.2013.2267804 10.1109/TPEL.2015.2506400 10.1109/JESTPE.2016.2573758 10.1109/LMWC.2016.2585553 10.1109/MPEL.2014.2381457 10.1109/TIA.2014.2369818 10.1109/TPEL.2016.2518183 10.1109/IECON.2013.6699239 10.1109/MPEL.2015.2447671 10.1109/TED.2015.2426711 10.1109/TPEL.2013.2276127 10.1109/LED.2016.2612624 10.1109/TED.2014.2359240 10.1109/TED.2016.2515566 10.1109/TSM.2016.2599839 10.1109/APEC.2015.7104411 10.1109/JESTPE.2016.2603195 10.1109/MPEL.2014.2382195 10.1109/TED.2016.2601559 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/CJECE.2018.2807780 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 54 |
ExternalDocumentID | 10_1109_CJECE_2018_2807780 8341519 |
Genre | orig-research |
GroupedDBID | 0R~ 29B 4.4 5GY 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS ACIWK AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS TN5 VH1 AAYXX CITATION |
ID | FETCH-LOGICAL-c267t-f30d8c96bbcb328f66e787b913ade3b510b774be174c4b9957ff00d6afd63d7d3 |
IEDL.DBID | RIE |
ISSN | 0840-8688 |
IngestDate | Tue Jul 01 03:11:29 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Wed Aug 27 02:51:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c267t-f30d8c96bbcb328f66e787b913ade3b510b774be174c4b9957ff00d6afd63d7d3 |
ORCID | 0000-0002-8420-2472 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1109_CJECE_2018_2807780 ieee_primary_8341519 crossref_citationtrail_10_1109_CJECE_2018_2807780 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Canadian journal of electrical and computer engineering |
PublicationTitleAbbrev | J-CECE |
PublicationYear | 2018 |
Publisher | IEEE Canada |
Publisher_xml | – name: IEEE Canada |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref21 ref2 ref1 ref17 ref16 xue (ref20) 2015 ref19 ref18 ref8 ref7 ref9 ref3 ref6 ref5 mejbri (ref4) 2013; 33 nos |
References_xml | – ident: ref9 doi: 10.1109/TPEL.2013.2267804 – ident: ref7 doi: 10.1109/TPEL.2015.2506400 – start-page: 579 year: 2015 ident: ref20 article-title: Design of integrated transformer and inductor for high frequency dual active bridge GaN charger for PHEV publication-title: Proc IEEE Appl Power Electron Conf Expo (APEC) – ident: ref10 doi: 10.1109/JESTPE.2016.2573758 – ident: ref11 doi: 10.1109/LMWC.2016.2585553 – volume: 33 nos start-page: 1 year: 2013 ident: ref4 article-title: Bi-objective sizing optimization of power converter using genetic algorithms: Application to photovoltaic systems publication-title: J Comput Math Elect Electron Eng – ident: ref13 doi: 10.1109/MPEL.2014.2381457 – ident: ref19 doi: 10.1109/TIA.2014.2369818 – ident: ref5 doi: 10.1109/TPEL.2016.2518183 – ident: ref14 doi: 10.1109/IECON.2013.6699239 – ident: ref16 doi: 10.1109/MPEL.2015.2447671 – ident: ref18 doi: 10.1109/TED.2015.2426711 – ident: ref12 doi: 10.1109/TPEL.2013.2276127 – ident: ref17 doi: 10.1109/LED.2016.2612624 – ident: ref3 doi: 10.1109/TED.2014.2359240 – ident: ref1 doi: 10.1109/TED.2016.2515566 – ident: ref6 doi: 10.1109/TSM.2016.2599839 – ident: ref21 doi: 10.1109/APEC.2015.7104411 – ident: ref2 doi: 10.1109/JESTPE.2016.2603195 – ident: ref8 doi: 10.1109/MPEL.2014.2382195 – ident: ref15 doi: 10.1109/TED.2016.2601559 |
SSID | ssj0038054 |
Score | 2.3473904 |
Snippet | This paper introduces a unique quantified study about using low-losses fast-switching wide bandgap (WBG) devices, i.e., gallium nitride (GaN) and silicon... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 45 |
SubjectTerms | dc/dc converter Electric vehicles (EVs) Gallium nitride gallium nitride (GaN) E-HEMT cascode HEMTs Silicon Silicon carbide silicon carbide (SiC) trench accumulation channel field effect transistor (ACCUFET) Switches Switching frequency wide bandgap (WBG) devices |
Title | Wide Bandgap Devices in Electric Vehicle Converters: A Performance Survey |
URI | https://ieeexplore.ieee.org/document/8341519 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Qkx58oRFf6cGbLpTtUlpviBAk0Zgoym2zbadKNAtBMNFfb9tdkBhjvG2aTtLMtNOZ7TffIHRiU4JQSwaB4FoFETcqSGhYCxL3KGSFNAGPtrhh3X7UG9QHBXS2qIUBAA8-g4r79G_5eqRm7ldZlVuXW3ccnys2cctqteZel3LiO54Rm7AEnHE-L5AhotrqtVtth-LiFcf90nAUkEuX0FJXFX-pdDbQ9Xw5GZbkpTKbyor6_MHU-N_1bqL1PLrEzWw7bKECpNtobYlzsISuHoca8EWS6qdkjC_Bewo8THHbN8QZKvwAz04atxwg3SE-385xE99-Vxjgu9nkHT52UL_Tvm91g7yfQqBC1pgGhhLNlWBSKklDbhgDe1ylqNFEA5X2dEobDEqwSYqKpBD1hjGEaJYYzahuaLqLiukohT2EQ2a4HbLJHEAktJRUSENs6GAcuErpMqrNFRyrnGzc9bx4jX3SQUTsjRI7o8S5UcrodCEzzqg2_pxdcgpfzMx1vf_78AFadcIZDuUQFaeTGRzZaGIqj_02-gIYgcYe |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhECaNHtSDb2N9cvCmW9mlpeCt1jZVW2Niq942CwzaaFZTWxP99QK7rY0xxtuGACEzwMws33yD0IENCSItGQSCaxWUuVFBQqMwSNyjkB2kCXi0xRVr9coX95X7Ajqa5MIAgAefQcl9-rd8_aJG7lfZMbdXbsVxfM5au18Js2yt8b1LOfE1z4gNWQLOOB-nyBBxXL9o1BsOx8VLjv2l6kggp8zQVF0Vb1aaS6gzXlCGJnkqjYaypD5_cDX-d8XLaDH3L3Et2xArqADpKlqYYh1cQ-d3fQ34NEn1Q_KKz8DfFbif4oYvidNX-BYe3Whcd5B0h_l8O8E1fP2dY4BvRoN3-FhHvWajW28FeUWFQEWsOgwMJZorwaRUkkbcMAb2wEoR0kQDlfZ8SusOSrBhiipLISpVYwjRLDGaUV3VdAPNpC8pbCIcMcNtkw3nAMpCS0mFNMQ6D8bBq5QuonAs4FjldOOu6sVz7MMOImKvlNgpJc6VUkSHkzGvGdnGn73XnMAnPXNZb_3evI_mWt1OO26fX11uo3k3UYZK2UEzw8EIdq1vMZR7fkt9AZzkyWc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wide+Bandgap+Devices+in+Electric+Vehicle+Converters%3A+A+Performance+Survey&rft.jtitle=Canadian+journal+of+electrical+and+computer+engineering&rft.au=Abdelrahman%2C+Ahmed+S.&rft.au=Erdem%2C+Zekiye&rft.au=Attia%2C+Yosra&rft.au=Youssef%2C+Mohamed+Z.&rft.date=2018-12-01&rft.issn=0840-8688&rft.volume=41&rft.issue=1&rft.spage=45&rft.epage=54&rft_id=info:doi/10.1109%2FCJECE.2018.2807780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_CJECE_2018_2807780 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0840-8688&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0840-8688&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0840-8688&client=summon |