Wide Bandgap Devices in Electric Vehicle Converters: A Performance Survey

This paper introduces a unique quantified study about using low-losses fast-switching wide bandgap (WBG) devices, i.e., gallium nitride (GaN) and silicon carbide (SiC), over traditional Silicon (Si) devices in the switching of dc/dc converters, focusing on electric vehicles' (EVs) machine drive...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of electrical and computer engineering Vol. 41; no. 1; pp. 45 - 54
Main Authors Abdelrahman, Ahmed S., Erdem, Zekiye, Attia, Yosra, Youssef, Mohamed Z.
Format Journal Article
LanguageEnglish
Published IEEE Canada 01.12.2018
Subjects
Online AccessGet full text
ISSN0840-8688
DOI10.1109/CJECE.2018.2807780

Cover

Loading…
Abstract This paper introduces a unique quantified study about using low-losses fast-switching wide bandgap (WBG) devices, i.e., gallium nitride (GaN) and silicon carbide (SiC), over traditional Silicon (Si) devices in the switching of dc/dc converters, focusing on electric vehicles' (EVs) machine drive and battery charger. A detailed model of the power train of a Nissan Leaf was developed in PSIM software, with WBG semiconductors' capability. The model was simulated one time using GaN semiconductors and another time using SiC devices. Simulation results are quantified and a comparison between different semiconductors in terms of total losses and efficiency is presented. The developed PSIM model can also be extended to other EVs like Chevy Volt. A proof of concept prototype for a Nissan Leaf dc/dc converter was built in the laboratory and results were collected. Componentwise experimental results are presented and their correlation with simulation findings is demonstrated. In addition, experimental results of the overall power train test bench are found to be matched with the simulation results on a system level as well.
AbstractList This paper introduces a unique quantified study about using low-losses fast-switching wide bandgap (WBG) devices, i.e., gallium nitride (GaN) and silicon carbide (SiC), over traditional Silicon (Si) devices in the switching of dc/dc converters, focusing on electric vehicles' (EVs) machine drive and battery charger. A detailed model of the power train of a Nissan Leaf was developed in PSIM software, with WBG semiconductors' capability. The model was simulated one time using GaN semiconductors and another time using SiC devices. Simulation results are quantified and a comparison between different semiconductors in terms of total losses and efficiency is presented. The developed PSIM model can also be extended to other EVs like Chevy Volt. A proof of concept prototype for a Nissan Leaf dc/dc converter was built in the laboratory and results were collected. Componentwise experimental results are presented and their correlation with simulation findings is demonstrated. In addition, experimental results of the overall power train test bench are found to be matched with the simulation results on a system level as well.
Author Attia, Yosra
Abdelrahman, Ahmed S.
Youssef, Mohamed Z.
Erdem, Zekiye
Author_xml – sequence: 1
  givenname: Ahmed S.
  surname: Abdelrahman
  fullname: Abdelrahman, Ahmed S.
  email: ahmed.abdelrahman@uoit.ca
  organization: Department of Electrical, Computer and Software Engineering, Power Electronics and Drives Applications Laboratory, School of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
– sequence: 2
  givenname: Zekiye
  surname: Erdem
  fullname: Erdem, Zekiye
  email: zekiye.erdem@uoit.ca
  organization: Department of Electrical, Computer and Software Engineering, Power Electronics and Drives Applications Laboratory, School of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
– sequence: 3
  givenname: Yosra
  surname: Attia
  fullname: Attia, Yosra
  email: yosra.attia@uoit.ca
  organization: Department of Electrical, Computer and Software Engineering, Power Electronics and Drives Applications Laboratory, School of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
– sequence: 4
  givenname: Mohamed Z.
  orcidid: 0000-0002-8420-2472
  surname: Youssef
  fullname: Youssef, Mohamed Z.
  email: mohamed.youssef@uoit.ca
  organization: Department of Electrical, Computer and Software Engineering, Power Electronics and Drives Applications Laboratory, School of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
BookMark eNp90L1OwzAYhWEPRaIFbgAW30DK5ziJHbYSAhRVAom_MfLPZzBKk8oOlXr3UFoxMDCd6TnDOyGjru-QkFMGU8agPK_u6qqepsDkNJUghIQRGYPMIJGFlIdkEuMHAJeQZ2Myf_UW6aXq7Jta0Stce4OR-o7WLZoheENf8N2bFmnVd2sMA4Z4QWf0AYPrw1J1BunjZ1jj5pgcONVGPNnvEXm-rp-q22RxfzOvZovEpIUYEsfBSlMWWhvNU-mKAoUUumRcWeQ6Z6CFyDQykZlMl2UunAOwhXK24FZYfkTk7teEPsaArjF-UIPvuyEo3zYMmm2G5idDs83Q7DN80_QPXQW_VGHzPzrbIY-Iv0DyjOWs5F-UYm0v
CODEN CJEEEL
CitedBy_id crossref_primary_10_1016_j_rser_2019_109336
crossref_primary_10_3390_electronics12204295
crossref_primary_10_1016_j_est_2022_104212
crossref_primary_10_1109_TIA_2019_2916302
crossref_primary_10_1016_j_rser_2025_115419
crossref_primary_10_3390_en13205351
crossref_primary_10_1016_j_rineng_2025_104403
crossref_primary_10_2116_analsci_18P542
crossref_primary_10_1109_TPEL_2019_2954716
crossref_primary_10_3390_electronics12041063
crossref_primary_10_3390_en16010129
crossref_primary_10_1016_j_seta_2023_103512
crossref_primary_10_1109_CJECE_2020_2967129
crossref_primary_10_1088_1757_899X_623_1_012005
crossref_primary_10_1002_er_6683
crossref_primary_10_3390_en11102798
crossref_primary_10_7567_1347_4065_ab07a6
crossref_primary_10_1002_er_8581
crossref_primary_10_1109_TPEL_2022_3179829
crossref_primary_10_3390_electronics12132993
crossref_primary_10_3390_en15239172
crossref_primary_10_1007_s43236_024_00849_7
crossref_primary_10_1088_1361_6528_ac0d81
crossref_primary_10_3390_s23146481
crossref_primary_10_1109_ACCESS_2020_2986972
crossref_primary_10_1051_e3sconf_202455201145
crossref_primary_10_3390_en14123477
crossref_primary_10_3390_mi13122133
crossref_primary_10_1541_ieejjia_22006323
crossref_primary_10_1016_j_rser_2019_109264
crossref_primary_10_1063_5_0100426
crossref_primary_10_1016_j_matpr_2020_02_916
crossref_primary_10_1016_j_prime_2024_100574
crossref_primary_10_1109_TPEL_2024_3448201
crossref_primary_10_1016_j_jpowsour_2019_227489
crossref_primary_10_1109_TPEL_2020_3009008
crossref_primary_10_1109_TPEL_2022_3188747
crossref_primary_10_3390_batteries9020099
crossref_primary_10_1002_cta_3313
crossref_primary_10_1109_TPEL_2024_3368519
crossref_primary_10_1038_s41598_024_55426_6
Cites_doi 10.1109/TPEL.2013.2267804
10.1109/TPEL.2015.2506400
10.1109/JESTPE.2016.2573758
10.1109/LMWC.2016.2585553
10.1109/MPEL.2014.2381457
10.1109/TIA.2014.2369818
10.1109/TPEL.2016.2518183
10.1109/IECON.2013.6699239
10.1109/MPEL.2015.2447671
10.1109/TED.2015.2426711
10.1109/TPEL.2013.2276127
10.1109/LED.2016.2612624
10.1109/TED.2014.2359240
10.1109/TED.2016.2515566
10.1109/TSM.2016.2599839
10.1109/APEC.2015.7104411
10.1109/JESTPE.2016.2603195
10.1109/MPEL.2014.2382195
10.1109/TED.2016.2601559
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/CJECE.2018.2807780
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 54
ExternalDocumentID 10_1109_CJECE_2018_2807780
8341519
Genre orig-research
GroupedDBID 0R~
29B
4.4
5GY
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c267t-f30d8c96bbcb328f66e787b913ade3b510b774be174c4b9957ff00d6afd63d7d3
IEDL.DBID RIE
ISSN 0840-8688
IngestDate Tue Jul 01 03:11:29 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Wed Aug 27 02:51:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c267t-f30d8c96bbcb328f66e787b913ade3b510b774be174c4b9957ff00d6afd63d7d3
ORCID 0000-0002-8420-2472
PageCount 10
ParticipantIDs crossref_primary_10_1109_CJECE_2018_2807780
ieee_primary_8341519
crossref_citationtrail_10_1109_CJECE_2018_2807780
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Canadian journal of electrical and computer engineering
PublicationTitleAbbrev J-CECE
PublicationYear 2018
Publisher IEEE Canada
Publisher_xml – name: IEEE Canada
References ref13
ref12
ref15
ref14
ref11
ref10
ref21
ref2
ref1
ref17
ref16
xue (ref20) 2015
ref19
ref18
ref8
ref7
ref9
ref3
ref6
ref5
mejbri (ref4) 2013; 33 nos
References_xml – ident: ref9
  doi: 10.1109/TPEL.2013.2267804
– ident: ref7
  doi: 10.1109/TPEL.2015.2506400
– start-page: 579
  year: 2015
  ident: ref20
  article-title: Design of integrated transformer and inductor for high frequency dual active bridge GaN charger for PHEV
  publication-title: Proc IEEE Appl Power Electron Conf Expo (APEC)
– ident: ref10
  doi: 10.1109/JESTPE.2016.2573758
– ident: ref11
  doi: 10.1109/LMWC.2016.2585553
– volume: 33 nos
  start-page: 1
  year: 2013
  ident: ref4
  article-title: Bi-objective sizing optimization of power converter using genetic algorithms: Application to photovoltaic systems
  publication-title: J Comput Math Elect Electron Eng
– ident: ref13
  doi: 10.1109/MPEL.2014.2381457
– ident: ref19
  doi: 10.1109/TIA.2014.2369818
– ident: ref5
  doi: 10.1109/TPEL.2016.2518183
– ident: ref14
  doi: 10.1109/IECON.2013.6699239
– ident: ref16
  doi: 10.1109/MPEL.2015.2447671
– ident: ref18
  doi: 10.1109/TED.2015.2426711
– ident: ref12
  doi: 10.1109/TPEL.2013.2276127
– ident: ref17
  doi: 10.1109/LED.2016.2612624
– ident: ref3
  doi: 10.1109/TED.2014.2359240
– ident: ref1
  doi: 10.1109/TED.2016.2515566
– ident: ref6
  doi: 10.1109/TSM.2016.2599839
– ident: ref21
  doi: 10.1109/APEC.2015.7104411
– ident: ref2
  doi: 10.1109/JESTPE.2016.2603195
– ident: ref8
  doi: 10.1109/MPEL.2014.2382195
– ident: ref15
  doi: 10.1109/TED.2016.2601559
SSID ssj0038054
Score 2.3473904
Snippet This paper introduces a unique quantified study about using low-losses fast-switching wide bandgap (WBG) devices, i.e., gallium nitride (GaN) and silicon...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 45
SubjectTerms dc/dc converter
Electric vehicles (EVs)
Gallium nitride
gallium nitride (GaN) E-HEMT cascode
HEMTs
Silicon
Silicon carbide
silicon carbide (SiC) trench accumulation channel field effect transistor (ACCUFET)
Switches
Switching frequency
wide bandgap (WBG) devices
Title Wide Bandgap Devices in Electric Vehicle Converters: A Performance Survey
URI https://ieeexplore.ieee.org/document/8341519
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Qkx58oRFf6cGbLpTtUlpviBAk0Zgoym2zbadKNAtBMNFfb9tdkBhjvG2aTtLMtNOZ7TffIHRiU4JQSwaB4FoFETcqSGhYCxL3KGSFNAGPtrhh3X7UG9QHBXS2qIUBAA8-g4r79G_5eqRm7ldZlVuXW3ccnys2cctqteZel3LiO54Rm7AEnHE-L5AhotrqtVtth-LiFcf90nAUkEuX0FJXFX-pdDbQ9Xw5GZbkpTKbyor6_MHU-N_1bqL1PLrEzWw7bKECpNtobYlzsISuHoca8EWS6qdkjC_Bewo8THHbN8QZKvwAz04atxwg3SE-385xE99-Vxjgu9nkHT52UL_Tvm91g7yfQqBC1pgGhhLNlWBSKklDbhgDe1ylqNFEA5X2dEobDEqwSYqKpBD1hjGEaJYYzahuaLqLiukohT2EQ2a4HbLJHEAktJRUSENs6GAcuErpMqrNFRyrnGzc9bx4jX3SQUTsjRI7o8S5UcrodCEzzqg2_pxdcgpfzMx1vf_78AFadcIZDuUQFaeTGRzZaGIqj_02-gIYgcYe
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwMhECaNHtSDb2N9cvCmW9mlpeCt1jZVW2Niq942CwzaaFZTWxP99QK7rY0xxtuGACEzwMws33yD0IENCSItGQSCaxWUuVFBQqMwSNyjkB2kCXi0xRVr9coX95X7Ajqa5MIAgAefQcl9-rd8_aJG7lfZMbdXbsVxfM5au18Js2yt8b1LOfE1z4gNWQLOOB-nyBBxXL9o1BsOx8VLjv2l6kggp8zQVF0Vb1aaS6gzXlCGJnkqjYaypD5_cDX-d8XLaDH3L3Et2xArqADpKlqYYh1cQ-d3fQ34NEn1Q_KKz8DfFbif4oYvidNX-BYe3Whcd5B0h_l8O8E1fP2dY4BvRoN3-FhHvWajW28FeUWFQEWsOgwMJZorwaRUkkbcMAb2wEoR0kQDlfZ8SusOSrBhiipLISpVYwjRLDGaUV3VdAPNpC8pbCIcMcNtkw3nAMpCS0mFNMQ6D8bBq5QuonAs4FjldOOu6sVz7MMOImKvlNgpJc6VUkSHkzGvGdnGn73XnMAnPXNZb_3evI_mWt1OO26fX11uo3k3UYZK2UEzw8EIdq1vMZR7fkt9AZzkyWc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wide+Bandgap+Devices+in+Electric+Vehicle+Converters%3A+A+Performance+Survey&rft.jtitle=Canadian+journal+of+electrical+and+computer+engineering&rft.au=Abdelrahman%2C+Ahmed+S.&rft.au=Erdem%2C+Zekiye&rft.au=Attia%2C+Yosra&rft.au=Youssef%2C+Mohamed+Z.&rft.date=2018-12-01&rft.issn=0840-8688&rft.volume=41&rft.issue=1&rft.spage=45&rft.epage=54&rft_id=info:doi/10.1109%2FCJECE.2018.2807780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_CJECE_2018_2807780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0840-8688&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0840-8688&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0840-8688&client=summon