Upper Embeddability, Girth and the Degree-Sum of Nonadjacent Vertices
Let G be a 2-edge-connected simple graph with girth g , independence number α( G ), and if one of the following two conditions holds α( G ) ≤ 2; α( G ) ≥ 3, and for any three nonadjacent vertices v i ( i = 1,2,3), it has , then G is upper embeddable and the lower bound v − 3 g + 7 is best possib...
Saved in:
Published in | Graphs and combinatorics Vol. 25; no. 2; pp. 253 - 264 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
Springer Japan
01.05.2009
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let
G
be a 2-edge-connected simple graph with girth
g
, independence number α(
G
), and if one of the following two conditions holds
α(
G
) ≤ 2;
α(
G
) ≥ 3, and for any three nonadjacent vertices
v
i
(
i
= 1,2,3), it has
,
then
G
is upper embeddable and the lower bound
v
− 3
g
+ 7 is best possible. Similarly the result for 3-edge-connected simple graph with girth
g
and independence number α(
G
) is also obtained. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-008-0837-1 |