The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development

The mechanisms of syringomyelia have long puzzled neurosurgeons and researchers alike due to difficulties in identifying the driving forces behind fluid flow into a syrinx, apparently against a pressure gradient between the spinal cord and the subarachnoid space (SAS). Recently, the synchronization...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurosurgery Vol. 112; no. 4; p. 808
Main Authors Bilston, Lynne E, Stoodley, Marcus A, Fletcher, David F
Format Journal Article
LanguageEnglish
Published United States 01.04.2010
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:The mechanisms of syringomyelia have long puzzled neurosurgeons and researchers alike due to difficulties in identifying the driving forces behind fluid flow into a syrinx, apparently against a pressure gradient between the spinal cord and the subarachnoid space (SAS). Recently, the synchronization between CSF flow and the cardiac cycle has been postulated to affect fluid flow in the spinal cord. This study aims to determine the effect of changes in the timing of SAS pressure on perivascular flow into the spinal cord. This study uses a computational fluid dynamics model to investigate whether the relative timing of a spinal artery cardiovascular pulse wave and fluid pressure in the spinal SAS can influence CSF flow in the perivascular spaces. The results show that the mass flow rate of CSF through a model periarterial space is strongly influenced by the relative timing of the arterial pulse wave and the SAS pressure. These findings suggest that factors that might alter the timing of the pulse wave or the fluid flow in the SAS could potentially affect fluid flow into a syrinx.
ISSN:1933-0693
DOI:10.3171/2009.5.jns08945