Hierarchical Mixture Models for Zero-inflated Correlated Count Data

Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with multilevel data set, referred as hierarchical mixture zero-inflated Poisson mixed...

Full description

Saved in:
Bibliographic Details
Published inActa Mathematicae Applicatae Sinica Vol. 32; no. 2; pp. 373 - 384
Main Authors Chen, Xue-dong, Shi, Hong-xing, Wang, Xue-ren
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with multilevel data set, referred as hierarchical mixture zero-inflated Poisson mixed regression models. A stochastic EM algorithm is developed for obtaining the ML estimates of interested parameters and a model comparison is also considered for comparing models with different latent classes through BIC criterion. An application to the analysis of count data from a Shanghai Adolescence Fitness Survey and a simulation study illustrate the usefulness and effectiveness of our methodologies.
Bibliography:Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with multilevel data set, referred as hierarchical mixture zero-inflated Poisson mixed regression models. A stochastic EM algorithm is developed for obtaining the ML estimates of interested parameters and a model comparison is also considered for comparing models with different latent classes through BIC criterion. An application to the analysis of count data from a Shanghai Adolescence Fitness Survey and a simulation study illustrate the usefulness and effectiveness of our methodologies.
11-2041/O1
zero-inflation; random effect; latent class; stochastic EM algorithm; model selection
ISSN:0168-9673
1618-3932
DOI:10.1007/s10255-016-0564-y