Cation Substitution Induced d‐Band Center Modulation on Cobalt‐Based Spinel Oxides for Catalytic Ozonation

Co 3 O 4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic frameworks (MOFs)‐derived Ni‐ and Mg‐ substituted Co 3 O 4 catalysts retain similar spinel structures, but display improved and reduced ozonati...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 44
Main Authors Qu, Wei, Tang, Zhuoyun, Tang, Su, Wen, Hailin, Fang, Jingyun, Lian, Qiyu, Shu, Dong, He, Chun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 25.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Co 3 O 4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic frameworks (MOFs)‐derived Ni‐ and Mg‐ substituted Co 3 O 4 catalysts retain similar spinel structures, but display improved and reduced ozonation performance of methyl mercaptan (CH 3 SH), respectively. Remarkably, the NiCo 2 O 4 catalyst can still ≈90% removal of CH 3 SH after running for 20 h at room temperature under an initial concentration of 50 ppm CH 3 SH and 40 ppm O 3 , relative humidity of 60%, and space velocity of 300 000 mL h −1 g −1 , exceeding the reported values. Experimental characterizations have unveiled that the substitution of Ni and Mg into the Co 3 O 4 spinel altered surface acidity, oxygen species mobility, and Co 2+ /Co 3+ ratio. The in situ Raman spectra reveal the dynamic formation Co(III)‐O ad * via the transformation of O 3 into surface atomic oxygen (O ad *) and peroxide species (O 2 *). Theoretical calculations verify that Ni‐substitution increases nonuniform charges and Fermi density, leading to a moderate increase in d‐band center energy levels, thereby promoting O 3 specific adsorption/activation to convert O ad */O 2 * and •OH/ 1 O 2 /•O 2 − , which contributes to eliminate CH 3 SH and prevent poisoning. The concept of tuning the d‐band center can provide valuable insights for the design of other catalysts for catalytic ozonation.
AbstractList Co3O4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic frameworks (MOFs)‐derived Ni‐ and Mg‐ substituted Co3O4 catalysts retain similar spinel structures, but display improved and reduced ozonation performance of methyl mercaptan (CH3SH), respectively. Remarkably, the NiCo2O4 catalyst can still ≈90% removal of CH3SH after running for 20 h at room temperature under an initial concentration of 50 ppm CH3SH and 40 ppm O3, relative humidity of 60%, and space velocity of 300 000 mL h−1 g−1, exceeding the reported values. Experimental characterizations have unveiled that the substitution of Ni and Mg into the Co3O4 spinel altered surface acidity, oxygen species mobility, and Co2+/Co3+ ratio. The in situ Raman spectra reveal the dynamic formation Co(III)‐Oad* via the transformation of O3 into surface atomic oxygen (Oad*) and peroxide species (O2*). Theoretical calculations verify that Ni‐substitution increases nonuniform charges and Fermi density, leading to a moderate increase in d‐band center energy levels, thereby promoting O3 specific adsorption/activation to convert Oad*/O2* and •OH/1O2/•O2−, which contributes to eliminate CH3SH and prevent poisoning. The concept of tuning the d‐band center can provide valuable insights for the design of other catalysts for catalytic ozonation.
Co 3 O 4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic frameworks (MOFs)‐derived Ni‐ and Mg‐ substituted Co 3 O 4 catalysts retain similar spinel structures, but display improved and reduced ozonation performance of methyl mercaptan (CH 3 SH), respectively. Remarkably, the NiCo 2 O 4 catalyst can still ≈90% removal of CH 3 SH after running for 20 h at room temperature under an initial concentration of 50 ppm CH 3 SH and 40 ppm O 3 , relative humidity of 60%, and space velocity of 300 000 mL h −1 g −1 , exceeding the reported values. Experimental characterizations have unveiled that the substitution of Ni and Mg into the Co 3 O 4 spinel altered surface acidity, oxygen species mobility, and Co 2+ /Co 3+ ratio. The in situ Raman spectra reveal the dynamic formation Co(III)‐O ad * via the transformation of O 3 into surface atomic oxygen (O ad *) and peroxide species (O 2 *). Theoretical calculations verify that Ni‐substitution increases nonuniform charges and Fermi density, leading to a moderate increase in d‐band center energy levels, thereby promoting O 3 specific adsorption/activation to convert O ad */O 2 * and •OH/ 1 O 2 /•O 2 − , which contributes to eliminate CH 3 SH and prevent poisoning. The concept of tuning the d‐band center can provide valuable insights for the design of other catalysts for catalytic ozonation.
Author Fang, Jingyun
Shu, Dong
Tang, Zhuoyun
Qu, Wei
Tang, Su
He, Chun
Wen, Hailin
Lian, Qiyu
Author_xml – sequence: 1
  givenname: Wei
  surname: Qu
  fullname: Qu, Wei
  organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
– sequence: 2
  givenname: Zhuoyun
  surname: Tang
  fullname: Tang, Zhuoyun
  organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
– sequence: 3
  givenname: Su
  surname: Tang
  fullname: Tang, Su
  organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
– sequence: 4
  givenname: Hailin
  surname: Wen
  fullname: Wen, Hailin
  organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
– sequence: 5
  givenname: Jingyun
  orcidid: 0000-0001-5997-0384
  surname: Fang
  fullname: Fang, Jingyun
  organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Guangzhou 510275 P. R. China
– sequence: 6
  givenname: Qiyu
  surname: Lian
  fullname: Lian, Qiyu
  organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
– sequence: 7
  givenname: Dong
  orcidid: 0000-0001-6915-6714
  surname: Shu
  fullname: Shu, Dong
  organization: School of Chemistry South China Normal University Guangzhou 510006 P. R. China
– sequence: 8
  givenname: Chun
  orcidid: 0000-0002-3875-5631
  surname: He
  fullname: He, Chun
  organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Guangzhou 510275 P. R. China
BookMark eNp1kE1LAzEQhoNUsK1ePQc8t2ay3d3sURc_CpUequBtyeYDUrZJTbJgPfkT_I3-Erdb6UEQBmZeeN4Z5h2hgXVWIXQJZAqE0Gsu9WZKCU0IZHl-goaQQTZJCGWD4wyvZ2gUwpoQyPNkNkS25NE4i1dtHaKJbS_mVrZCSSy_P79uuZW4VDYqj5-cbJsD31Xpat7EHgkdvNoaqxq8fDdSBaydx91q3uyiEXj54WzvO0enmjdBXfz2MXq5v3suHyeL5cO8vFlMBM3yOIGU0JykUvNCAe2U0pLptAYlpQQtsiwVhU5qVlAlGKkTSGecMEgBFE9pnozR1WHv1ru3VoVYrV3rbXeyoowBK1jKWEdND5TwLgSvdLX1ZsP9rgJS7TOt9plWx0w7w-yPQZjYPxY9N81_th-6RH_z
CitedBy_id crossref_primary_10_1002_smll_202309076
crossref_primary_10_1021_acsaenm_4c00713
crossref_primary_10_1002_smll_202311879
crossref_primary_10_1016_j_cej_2024_156880
crossref_primary_10_1016_j_jre_2025_02_004
crossref_primary_10_1016_j_jcis_2024_09_104
crossref_primary_10_1039_D3TA07007G
crossref_primary_10_1039_D4CY00893F
crossref_primary_10_1016_j_cej_2024_157737
crossref_primary_10_1016_j_snb_2024_136493
crossref_primary_10_1002_batt_202300609
crossref_primary_10_1007_s11431_024_2736_x
crossref_primary_10_1073_pnas_2319119121
crossref_primary_10_1016_j_apcatb_2023_123675
crossref_primary_10_1039_D4CC04468A
crossref_primary_10_1016_j_apcatb_2023_123476
crossref_primary_10_1016_j_seppur_2024_128824
crossref_primary_10_1002_chem_202401380
crossref_primary_10_1016_j_jhazmat_2024_133481
crossref_primary_10_1007_s11356_024_34112_0
crossref_primary_10_1016_j_cej_2024_156754
crossref_primary_10_1016_j_apcatb_2024_124953
crossref_primary_10_1002_smll_202407339
crossref_primary_10_1016_j_cej_2025_160316
crossref_primary_10_1016_j_seppur_2024_128572
crossref_primary_10_1016_j_cej_2024_157327
crossref_primary_10_1016_j_cej_2024_155706
crossref_primary_10_1021_acscatal_4c02698
crossref_primary_10_1016_j_apcatb_2025_125067
crossref_primary_10_1002_adfm_202314187
crossref_primary_10_1016_j_apcata_2024_119909
crossref_primary_10_1002_smll_202309773
crossref_primary_10_1016_j_matt_2024_01_013
crossref_primary_10_1016_j_apcatb_2024_124185
crossref_primary_10_1021_acsestengg_4c00404
crossref_primary_10_1039_D4TA07960D
crossref_primary_10_1016_j_cej_2024_155010
crossref_primary_10_1016_j_jhazmat_2024_137075
crossref_primary_10_1016_j_apcatb_2023_123457
crossref_primary_10_1016_j_microc_2025_112985
crossref_primary_10_1016_j_apcatb_2024_123736
crossref_primary_10_1016_j_seppur_2024_128726
crossref_primary_10_1021_acscatal_3c06256
crossref_primary_10_1039_D4TA05972G
crossref_primary_10_1007_s00604_024_06326_z
crossref_primary_10_1016_j_seppur_2024_131362
crossref_primary_10_1039_D4EE00058G
crossref_primary_10_1016_j_trac_2025_118159
crossref_primary_10_1016_j_cej_2025_161464
crossref_primary_10_1021_acsnano_4c18951
crossref_primary_10_1021_acscatal_3c05910
crossref_primary_10_1021_acsnano_4c11842
Cites_doi 10.1002/adma.202209307
10.1021/acscatal.0c04232
10.1021/acs.est.0c08335
10.1021/acsami.9b00195
10.1016/j.apcatb.2013.05.061
10.1016/j.jhazmat.2007.03.071
10.1002/anie.201907595
10.1039/D0TC03622F
10.1002/admi.202101933
10.1021/acscatal.2c02217
10.1016/j.ccr.2022.214855
10.1016/j.mtphys.2023.100988
10.1002/anie.202007767
10.1038/s41563-020-0764-y
10.1002/anie.201801834
10.1021/jacs.2c08726
10.1021/acscatal.2c05285
10.1002/adfm.202003947
10.1021/acs.est.2c07099
10.1021/acs.est.2c03811
10.1021/acs.est.2c05981
10.1021/acs.est.1c06938
10.1016/j.nantod.2020.100944
10.1021/acs.est.8b03696
10.1021/acs.est.1c07065
10.1002/anie.202206050
10.1021/acs.est.2c04033
10.1038/s41560-018-0097-0
10.1002/anie.201905543
10.1016/j.cej.2021.129459
10.1021/jacs.5b06336
10.1002/adfm.201910257
10.1016/j.apcatb.2021.120970
10.1016/j.jhazmat.2022.130029
10.1021/acsami.2c10217
10.1016/j.apcatb.2019.04.026
10.1021/acscatal.5b01039
10.1002/adma.201907156
10.1021/acsestwater.1c00331
10.1021/acs.est.0c00100
10.1002/adfm.202205054
10.1002/adfm.202010718
10.1021/acscatal.2c04759
10.1039/C7TA09149D
10.1002/anie.200504386
10.1021/acs.est.8b04669
10.1016/j.jcis.2018.12.061
10.1038/nchem.121
10.1021/es503729h
10.1021/acs.est.2c01798
10.1002/adfm.202212379
10.1016/j.apcatb.2021.120881
10.1021/acscatal.2c00296
10.34133/ultrafastscience.0006
10.1021/acs.est.0c05235
10.1021/acs.est.2c03769
10.1073/pnas.2201607119
10.1021/acscatal.0c01273
10.1021/acscatal.8b01046
10.1002/adfm.202111615
10.1021/acs.est.0c02680
10.1016/j.apmt.2022.101546
10.1002/adfm.202100470
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202301677
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
ExternalDocumentID 10_1002_adfm_202301677
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c267t-1502705dfa9e12150efd8f5b1eddd1fc665c9f3b892ec80b3154a081511ea5273
ISSN 1616-301X
IngestDate Sun Jul 13 04:48:27 EDT 2025
Tue Jul 01 00:30:46 EDT 2025
Thu Apr 24 22:54:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c267t-1502705dfa9e12150efd8f5b1eddd1fc665c9f3b892ec80b3154a081511ea5273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5997-0384
0000-0001-6915-6714
0000-0002-3875-5631
PQID 2881898588
PQPubID 2045204
ParticipantIDs proquest_journals_2881898588
crossref_primary_10_1002_adfm_202301677
crossref_citationtrail_10_1002_adfm_202301677
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-25
PublicationDateYYYYMMDD 2023-10-25
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-25
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_49_3
e_1_2_8_49_2
e_1_2_8_49_4
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_41_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_25_2
e_1_2_8_27_1
e_1_2_8_48_1
Guan M. (e_1_2_8_50_1) 2022; 16
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_16_4
e_1_2_8_16_5
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_50_2
References_xml – ident: e_1_2_8_46_1
  doi: 10.1002/adma.202209307
– ident: e_1_2_8_43_1
  doi: 10.1021/acscatal.0c04232
– ident: e_1_2_8_17_1
  doi: 10.1021/acs.est.0c08335
– ident: e_1_2_8_40_1
  doi: 10.1021/acsami.9b00195
– ident: e_1_2_8_35_1
  doi: 10.1016/j.apcatb.2013.05.061
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jhazmat.2007.03.071
– ident: e_1_2_8_8_1
  doi: 10.1002/anie.201907595
– ident: e_1_2_8_49_3
  doi: 10.1039/D0TC03622F
– ident: e_1_2_8_49_1
  doi: 10.1002/admi.202101933
– ident: e_1_2_8_21_2
  doi: 10.1021/acscatal.2c02217
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ccr.2022.214855
– ident: e_1_2_8_16_5
  doi: 10.1016/j.mtphys.2023.100988
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.202007767
– ident: e_1_2_8_48_1
  doi: 10.1038/s41563-020-0764-y
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.201801834
– ident: e_1_2_8_6_1
  doi: 10.1021/jacs.2c08726
– ident: e_1_2_8_3_1
  doi: 10.1021/acscatal.2c05285
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.202003947
– ident: e_1_2_8_23_1
  doi: 10.1021/acs.est.2c07099
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.est.2c03811
– ident: e_1_2_8_30_1
  doi: 10.1021/acs.est.2c05981
– ident: e_1_2_8_25_1
  doi: 10.1021/acs.est.1c06938
– ident: e_1_2_8_25_2
  doi: 10.1016/j.nantod.2020.100944
– ident: e_1_2_8_3_2
  doi: 10.1021/acs.est.8b03696
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.est.1c07065
– ident: e_1_2_8_44_1
  doi: 10.1002/anie.202206050
– volume: 16
  year: 2022
  ident: e_1_2_8_50_1
  publication-title: Ultrafast Sci.
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.est.2c04033
– ident: e_1_2_8_47_1
  doi: 10.1038/s41560-018-0097-0
– ident: e_1_2_8_9_1
  doi: 10.1002/anie.201905543
– ident: e_1_2_8_16_2
  doi: 10.1016/j.cej.2021.129459
– ident: e_1_2_8_15_1
  doi: 10.1021/jacs.5b06336
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201910257
– ident: e_1_2_8_27_1
  doi: 10.1016/j.apcatb.2021.120970
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jhazmat.2022.130029
– ident: e_1_2_8_49_2
  doi: 10.1021/acsami.2c10217
– ident: e_1_2_8_19_1
  doi: 10.1016/j.apcatb.2019.04.026
– ident: e_1_2_8_10_1
  doi: 10.1021/acscatal.5b01039
– ident: e_1_2_8_16_4
  doi: 10.1002/adma.201907156
– ident: e_1_2_8_39_1
  doi: 10.1021/acsestwater.1c00331
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.est.0c00100
– ident: e_1_2_8_2_1
  doi: 10.1002/adfm.202205054
– ident: e_1_2_8_45_1
  doi: 10.1002/adfm.202010718
– ident: e_1_2_8_34_1
  doi: 10.1021/acscatal.2c04759
– ident: e_1_2_8_12_1
  doi: 10.1039/C7TA09149D
– ident: e_1_2_8_18_1
  doi: 10.1002/anie.200504386
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.est.8b04669
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jcis.2018.12.061
– ident: e_1_2_8_21_1
  doi: 10.1038/nchem.121
– ident: e_1_2_8_41_2
  doi: 10.1021/es503729h
– ident: e_1_2_8_1_2
  doi: 10.1021/acs.est.2c01798
– ident: e_1_2_8_16_3
  doi: 10.1002/adfm.202212379
– ident: e_1_2_8_4_1
  doi: 10.1016/j.apcatb.2021.120881
– ident: e_1_2_8_31_1
  doi: 10.1021/acscatal.2c00296
– ident: e_1_2_8_50_2
  doi: 10.34133/ultrafastscience.0006
– ident: e_1_2_8_1_1
  doi: 10.1021/acs.est.0c05235
– ident: e_1_2_8_29_1
  doi: 10.1021/acs.est.2c03769
– ident: e_1_2_8_6_2
  doi: 10.1073/pnas.2201607119
– ident: e_1_2_8_20_1
  doi: 10.1021/acscatal.0c01273
– ident: e_1_2_8_11_1
  doi: 10.1021/acscatal.8b01046
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.202111615
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.est.0c02680
– ident: e_1_2_8_49_4
  doi: 10.1016/j.apmt.2022.101546
– ident: e_1_2_8_16_1
  doi: 10.1002/adfm.202100470
SSID ssj0017734
Score 2.5821154
Snippet Co 3 O 4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic...
Co3O4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Atomic oxygen
Catalysts
Cobalt oxides
Energy levels
Materials science
Metal-organic frameworks
Nickel
Poisoning (reaction inhibition)
Raman spectra
Relative humidity
Room temperature
Spinel
Substitutes
Transition metal oxides
VOCs
Volatile organic compounds
Title Cation Substitution Induced d‐Band Center Modulation on Cobalt‐Based Spinel Oxides for Catalytic Ozonation
URI https://www.proquest.com/docview/2881898588
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdZe9kOY90H69oNHQY7DG-2HMvSsctawkibQxMIuxjbklggOKW1oe2p1972N-4v2XuW_JHug24QTKIIY_R-fnpf-j1C3vIslzKNtCciYcBB8ZUnTJB5YRqpUKY8ZHUw5_iEj-fDL4toMRjc9qqWqjL7kF__9lzJ_0gVxkCueEr2HyTb3hQG4DvIF64gYbjeS8YjKz18-euMP_7AXhyY01dtGcMnjI1jFFefY-sz168LswQjJAMpexMv0Pw8A8Nz9X56uVS6JmvAU4Lp6gqZXafX66ITZUNe25QR4B7pQotgB9sF6AKrdTWfXnahAqtlvn6r1ldVcXf4tOpyRrViHKfLlWMJd0EKVpe72QPN91SFPRXMA6zGqxvpwA7VH3PHyJ3etgQaDp-WRPKX_cDyy6bKIOkAeFsBd01jNoi3T6bJ0XwySWaHi9kDss3A4wCVuX3w-Xhy2qak4tiWKDSP1zCA-uzj5v03LZzNDb62WmZPyGPnbtADi50dMtDFU_KoR0L5jBQWRbSPIupQRNWPm--IH2rxQzv8UPhY_NRTADnUIoda5FBADm2RQ1vkPCfzo8PZaOy5LhxeznhceuAxsNiPlEmlRioSXxslTJQFWikVmJzzKJcmzIRkOhd-FoJRnoKhCZa8TpHe7wXZKtaFfkmoVLEUoco1i9kw0xy8fZMbGQg5NDFXapd4zcoluaOox04pq8SSa7MEVzppV3qXvGvnn1lylj_O3G8EkbgX-CJhAqxVCUpKvPr733vkYQfqfbJVnlf6NdiiZfbGoeQnN7aOAw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cation+Substitution+Induced+d%E2%80%90Band+Center+Modulation+on+Cobalt%E2%80%90Based+Spinel+Oxides+for+Catalytic+Ozonation&rft.jtitle=Advanced+functional+materials&rft.au=Qu%2C+Wei&rft.au=Tang%2C+Zhuoyun&rft.au=Tang%2C+Su&rft.au=Wen%2C+Hailin&rft.date=2023-10-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=44&rft_id=info:doi/10.1002%2Fadfm.202301677&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon