Cation Substitution Induced d‐Band Center Modulation on Cobalt‐Based Spinel Oxides for Catalytic Ozonation
Co 3 O 4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic frameworks (MOFs)‐derived Ni‐ and Mg‐ substituted Co 3 O 4 catalysts retain similar spinel structures, but display improved and reduced ozonati...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 44 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
25.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Co
3
O
4
spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic frameworks (MOFs)‐derived Ni‐ and Mg‐ substituted Co
3
O
4
catalysts retain similar spinel structures, but display improved and reduced ozonation performance of methyl mercaptan (CH
3
SH), respectively. Remarkably, the NiCo
2
O
4
catalyst can still ≈90% removal of CH
3
SH after running for 20 h at room temperature under an initial concentration of 50 ppm CH
3
SH and 40 ppm O
3
, relative humidity of 60%, and space velocity of 300 000 mL h
−1
g
−1
, exceeding the reported values. Experimental characterizations have unveiled that the substitution of Ni and Mg into the Co
3
O
4
spinel altered surface acidity, oxygen species mobility, and Co
2+
/Co
3+
ratio. The in situ Raman spectra reveal the dynamic formation Co(III)‐O
ad
* via the transformation of O
3
into surface atomic oxygen (O
ad
*) and peroxide species (O
2
*). Theoretical calculations verify that Ni‐substitution increases nonuniform charges and Fermi density, leading to a moderate increase in d‐band center energy levels, thereby promoting O
3
specific adsorption/activation to convert O
ad
*/O
2
* and •OH/
1
O
2
/•O
2
−
, which contributes to eliminate CH
3
SH and prevent poisoning. The concept of tuning the d‐band center can provide valuable insights for the design of other catalysts for catalytic ozonation. |
---|---|
AbstractList | Co3O4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic frameworks (MOFs)‐derived Ni‐ and Mg‐ substituted Co3O4 catalysts retain similar spinel structures, but display improved and reduced ozonation performance of methyl mercaptan (CH3SH), respectively. Remarkably, the NiCo2O4 catalyst can still ≈90% removal of CH3SH after running for 20 h at room temperature under an initial concentration of 50 ppm CH3SH and 40 ppm O3, relative humidity of 60%, and space velocity of 300 000 mL h−1 g−1, exceeding the reported values. Experimental characterizations have unveiled that the substitution of Ni and Mg into the Co3O4 spinel altered surface acidity, oxygen species mobility, and Co2+/Co3+ ratio. The in situ Raman spectra reveal the dynamic formation Co(III)‐Oad* via the transformation of O3 into surface atomic oxygen (Oad*) and peroxide species (O2*). Theoretical calculations verify that Ni‐substitution increases nonuniform charges and Fermi density, leading to a moderate increase in d‐band center energy levels, thereby promoting O3 specific adsorption/activation to convert Oad*/O2* and •OH/1O2/•O2−, which contributes to eliminate CH3SH and prevent poisoning. The concept of tuning the d‐band center can provide valuable insights for the design of other catalysts for catalytic ozonation. Co 3 O 4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic frameworks (MOFs)‐derived Ni‐ and Mg‐ substituted Co 3 O 4 catalysts retain similar spinel structures, but display improved and reduced ozonation performance of methyl mercaptan (CH 3 SH), respectively. Remarkably, the NiCo 2 O 4 catalyst can still ≈90% removal of CH 3 SH after running for 20 h at room temperature under an initial concentration of 50 ppm CH 3 SH and 40 ppm O 3 , relative humidity of 60%, and space velocity of 300 000 mL h −1 g −1 , exceeding the reported values. Experimental characterizations have unveiled that the substitution of Ni and Mg into the Co 3 O 4 spinel altered surface acidity, oxygen species mobility, and Co 2+ /Co 3+ ratio. The in situ Raman spectra reveal the dynamic formation Co(III)‐O ad * via the transformation of O 3 into surface atomic oxygen (O ad *) and peroxide species (O 2 *). Theoretical calculations verify that Ni‐substitution increases nonuniform charges and Fermi density, leading to a moderate increase in d‐band center energy levels, thereby promoting O 3 specific adsorption/activation to convert O ad */O 2 * and •OH/ 1 O 2 /•O 2 − , which contributes to eliminate CH 3 SH and prevent poisoning. The concept of tuning the d‐band center can provide valuable insights for the design of other catalysts for catalytic ozonation. |
Author | Fang, Jingyun Shu, Dong Tang, Zhuoyun Qu, Wei Tang, Su He, Chun Wen, Hailin Lian, Qiyu |
Author_xml | – sequence: 1 givenname: Wei surname: Qu fullname: Qu, Wei organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China – sequence: 2 givenname: Zhuoyun surname: Tang fullname: Tang, Zhuoyun organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China – sequence: 3 givenname: Su surname: Tang fullname: Tang, Su organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China – sequence: 4 givenname: Hailin surname: Wen fullname: Wen, Hailin organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China – sequence: 5 givenname: Jingyun orcidid: 0000-0001-5997-0384 surname: Fang fullname: Fang, Jingyun organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Guangzhou 510275 P. R. China – sequence: 6 givenname: Qiyu surname: Lian fullname: Lian, Qiyu organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China – sequence: 7 givenname: Dong orcidid: 0000-0001-6915-6714 surname: Shu fullname: Shu, Dong organization: School of Chemistry South China Normal University Guangzhou 510006 P. R. China – sequence: 8 givenname: Chun orcidid: 0000-0002-3875-5631 surname: He fullname: He, Chun organization: School of Environmental Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology Guangzhou 510275 P. R. China |
BookMark | eNp1kE1LAzEQhoNUsK1ePQc8t2ay3d3sURc_CpUequBtyeYDUrZJTbJgPfkT_I3-Erdb6UEQBmZeeN4Z5h2hgXVWIXQJZAqE0Gsu9WZKCU0IZHl-goaQQTZJCGWD4wyvZ2gUwpoQyPNkNkS25NE4i1dtHaKJbS_mVrZCSSy_P79uuZW4VDYqj5-cbJsD31Xpat7EHgkdvNoaqxq8fDdSBaydx91q3uyiEXj54WzvO0enmjdBXfz2MXq5v3suHyeL5cO8vFlMBM3yOIGU0JykUvNCAe2U0pLptAYlpQQtsiwVhU5qVlAlGKkTSGecMEgBFE9pnozR1WHv1ru3VoVYrV3rbXeyoowBK1jKWEdND5TwLgSvdLX1ZsP9rgJS7TOt9plWx0w7w-yPQZjYPxY9N81_th-6RH_z |
CitedBy_id | crossref_primary_10_1002_smll_202309076 crossref_primary_10_1021_acsaenm_4c00713 crossref_primary_10_1002_smll_202311879 crossref_primary_10_1016_j_cej_2024_156880 crossref_primary_10_1016_j_jre_2025_02_004 crossref_primary_10_1016_j_jcis_2024_09_104 crossref_primary_10_1039_D3TA07007G crossref_primary_10_1039_D4CY00893F crossref_primary_10_1016_j_cej_2024_157737 crossref_primary_10_1016_j_snb_2024_136493 crossref_primary_10_1002_batt_202300609 crossref_primary_10_1007_s11431_024_2736_x crossref_primary_10_1073_pnas_2319119121 crossref_primary_10_1016_j_apcatb_2023_123675 crossref_primary_10_1039_D4CC04468A crossref_primary_10_1016_j_apcatb_2023_123476 crossref_primary_10_1016_j_seppur_2024_128824 crossref_primary_10_1002_chem_202401380 crossref_primary_10_1016_j_jhazmat_2024_133481 crossref_primary_10_1007_s11356_024_34112_0 crossref_primary_10_1016_j_cej_2024_156754 crossref_primary_10_1016_j_apcatb_2024_124953 crossref_primary_10_1002_smll_202407339 crossref_primary_10_1016_j_cej_2025_160316 crossref_primary_10_1016_j_seppur_2024_128572 crossref_primary_10_1016_j_cej_2024_157327 crossref_primary_10_1016_j_cej_2024_155706 crossref_primary_10_1021_acscatal_4c02698 crossref_primary_10_1016_j_apcatb_2025_125067 crossref_primary_10_1002_adfm_202314187 crossref_primary_10_1016_j_apcata_2024_119909 crossref_primary_10_1002_smll_202309773 crossref_primary_10_1016_j_matt_2024_01_013 crossref_primary_10_1016_j_apcatb_2024_124185 crossref_primary_10_1021_acsestengg_4c00404 crossref_primary_10_1039_D4TA07960D crossref_primary_10_1016_j_cej_2024_155010 crossref_primary_10_1016_j_jhazmat_2024_137075 crossref_primary_10_1016_j_apcatb_2023_123457 crossref_primary_10_1016_j_microc_2025_112985 crossref_primary_10_1016_j_apcatb_2024_123736 crossref_primary_10_1016_j_seppur_2024_128726 crossref_primary_10_1021_acscatal_3c06256 crossref_primary_10_1039_D4TA05972G crossref_primary_10_1007_s00604_024_06326_z crossref_primary_10_1016_j_seppur_2024_131362 crossref_primary_10_1039_D4EE00058G crossref_primary_10_1016_j_trac_2025_118159 crossref_primary_10_1016_j_cej_2025_161464 crossref_primary_10_1021_acsnano_4c18951 crossref_primary_10_1021_acscatal_3c05910 crossref_primary_10_1021_acsnano_4c11842 |
Cites_doi | 10.1002/adma.202209307 10.1021/acscatal.0c04232 10.1021/acs.est.0c08335 10.1021/acsami.9b00195 10.1016/j.apcatb.2013.05.061 10.1016/j.jhazmat.2007.03.071 10.1002/anie.201907595 10.1039/D0TC03622F 10.1002/admi.202101933 10.1021/acscatal.2c02217 10.1016/j.ccr.2022.214855 10.1016/j.mtphys.2023.100988 10.1002/anie.202007767 10.1038/s41563-020-0764-y 10.1002/anie.201801834 10.1021/jacs.2c08726 10.1021/acscatal.2c05285 10.1002/adfm.202003947 10.1021/acs.est.2c07099 10.1021/acs.est.2c03811 10.1021/acs.est.2c05981 10.1021/acs.est.1c06938 10.1016/j.nantod.2020.100944 10.1021/acs.est.8b03696 10.1021/acs.est.1c07065 10.1002/anie.202206050 10.1021/acs.est.2c04033 10.1038/s41560-018-0097-0 10.1002/anie.201905543 10.1016/j.cej.2021.129459 10.1021/jacs.5b06336 10.1002/adfm.201910257 10.1016/j.apcatb.2021.120970 10.1016/j.jhazmat.2022.130029 10.1021/acsami.2c10217 10.1016/j.apcatb.2019.04.026 10.1021/acscatal.5b01039 10.1002/adma.201907156 10.1021/acsestwater.1c00331 10.1021/acs.est.0c00100 10.1002/adfm.202205054 10.1002/adfm.202010718 10.1021/acscatal.2c04759 10.1039/C7TA09149D 10.1002/anie.200504386 10.1021/acs.est.8b04669 10.1016/j.jcis.2018.12.061 10.1038/nchem.121 10.1021/es503729h 10.1021/acs.est.2c01798 10.1002/adfm.202212379 10.1016/j.apcatb.2021.120881 10.1021/acscatal.2c00296 10.34133/ultrafastscience.0006 10.1021/acs.est.0c05235 10.1021/acs.est.2c03769 10.1073/pnas.2201607119 10.1021/acscatal.0c01273 10.1021/acscatal.8b01046 10.1002/adfm.202111615 10.1021/acs.est.0c02680 10.1016/j.apmt.2022.101546 10.1002/adfm.202100470 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202301677 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
ExternalDocumentID | 10_1002_adfm_202301677 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c267t-1502705dfa9e12150efd8f5b1eddd1fc665c9f3b892ec80b3154a081511ea5273 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:48:27 EDT 2025 Tue Jul 01 00:30:46 EDT 2025 Thu Apr 24 22:54:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 44 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c267t-1502705dfa9e12150efd8f5b1eddd1fc665c9f3b892ec80b3154a081511ea5273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5997-0384 0000-0001-6915-6714 0000-0002-3875-5631 |
PQID | 2881898588 |
PQPubID | 2045204 |
ParticipantIDs | proquest_journals_2881898588 crossref_primary_10_1002_adfm_202301677 crossref_citationtrail_10_1002_adfm_202301677 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-25 |
PublicationDateYYYYMMDD | 2023-10-25 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_49_3 e_1_2_8_49_2 e_1_2_8_49_4 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_41_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_25_2 e_1_2_8_27_1 e_1_2_8_48_1 Guan M. (e_1_2_8_50_1) 2022; 16 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_16_2 e_1_2_8_16_3 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_16_4 e_1_2_8_16_5 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_50_2 |
References_xml | – ident: e_1_2_8_46_1 doi: 10.1002/adma.202209307 – ident: e_1_2_8_43_1 doi: 10.1021/acscatal.0c04232 – ident: e_1_2_8_17_1 doi: 10.1021/acs.est.0c08335 – ident: e_1_2_8_40_1 doi: 10.1021/acsami.9b00195 – ident: e_1_2_8_35_1 doi: 10.1016/j.apcatb.2013.05.061 – ident: e_1_2_8_42_1 doi: 10.1016/j.jhazmat.2007.03.071 – ident: e_1_2_8_8_1 doi: 10.1002/anie.201907595 – ident: e_1_2_8_49_3 doi: 10.1039/D0TC03622F – ident: e_1_2_8_49_1 doi: 10.1002/admi.202101933 – ident: e_1_2_8_21_2 doi: 10.1021/acscatal.2c02217 – ident: e_1_2_8_38_1 doi: 10.1016/j.ccr.2022.214855 – ident: e_1_2_8_16_5 doi: 10.1016/j.mtphys.2023.100988 – ident: e_1_2_8_13_1 doi: 10.1002/anie.202007767 – ident: e_1_2_8_48_1 doi: 10.1038/s41563-020-0764-y – ident: e_1_2_8_22_1 doi: 10.1002/anie.201801834 – ident: e_1_2_8_6_1 doi: 10.1021/jacs.2c08726 – ident: e_1_2_8_3_1 doi: 10.1021/acscatal.2c05285 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.202003947 – ident: e_1_2_8_23_1 doi: 10.1021/acs.est.2c07099 – ident: e_1_2_8_26_1 doi: 10.1021/acs.est.2c03811 – ident: e_1_2_8_30_1 doi: 10.1021/acs.est.2c05981 – ident: e_1_2_8_25_1 doi: 10.1021/acs.est.1c06938 – ident: e_1_2_8_25_2 doi: 10.1016/j.nantod.2020.100944 – ident: e_1_2_8_3_2 doi: 10.1021/acs.est.8b03696 – ident: e_1_2_8_5_1 doi: 10.1021/acs.est.1c07065 – ident: e_1_2_8_44_1 doi: 10.1002/anie.202206050 – volume: 16 year: 2022 ident: e_1_2_8_50_1 publication-title: Ultrafast Sci. – ident: e_1_2_8_36_1 doi: 10.1021/acs.est.2c04033 – ident: e_1_2_8_47_1 doi: 10.1038/s41560-018-0097-0 – ident: e_1_2_8_9_1 doi: 10.1002/anie.201905543 – ident: e_1_2_8_16_2 doi: 10.1016/j.cej.2021.129459 – ident: e_1_2_8_15_1 doi: 10.1021/jacs.5b06336 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201910257 – ident: e_1_2_8_27_1 doi: 10.1016/j.apcatb.2021.120970 – ident: e_1_2_8_37_1 doi: 10.1016/j.jhazmat.2022.130029 – ident: e_1_2_8_49_2 doi: 10.1021/acsami.2c10217 – ident: e_1_2_8_19_1 doi: 10.1016/j.apcatb.2019.04.026 – ident: e_1_2_8_10_1 doi: 10.1021/acscatal.5b01039 – ident: e_1_2_8_16_4 doi: 10.1002/adma.201907156 – ident: e_1_2_8_39_1 doi: 10.1021/acsestwater.1c00331 – ident: e_1_2_8_32_1 doi: 10.1021/acs.est.0c00100 – ident: e_1_2_8_2_1 doi: 10.1002/adfm.202205054 – ident: e_1_2_8_45_1 doi: 10.1002/adfm.202010718 – ident: e_1_2_8_34_1 doi: 10.1021/acscatal.2c04759 – ident: e_1_2_8_12_1 doi: 10.1039/C7TA09149D – ident: e_1_2_8_18_1 doi: 10.1002/anie.200504386 – ident: e_1_2_8_41_1 doi: 10.1021/acs.est.8b04669 – ident: e_1_2_8_14_1 doi: 10.1016/j.jcis.2018.12.061 – ident: e_1_2_8_21_1 doi: 10.1038/nchem.121 – ident: e_1_2_8_41_2 doi: 10.1021/es503729h – ident: e_1_2_8_1_2 doi: 10.1021/acs.est.2c01798 – ident: e_1_2_8_16_3 doi: 10.1002/adfm.202212379 – ident: e_1_2_8_4_1 doi: 10.1016/j.apcatb.2021.120881 – ident: e_1_2_8_31_1 doi: 10.1021/acscatal.2c00296 – ident: e_1_2_8_50_2 doi: 10.34133/ultrafastscience.0006 – ident: e_1_2_8_1_1 doi: 10.1021/acs.est.0c05235 – ident: e_1_2_8_29_1 doi: 10.1021/acs.est.2c03769 – ident: e_1_2_8_6_2 doi: 10.1073/pnas.2201607119 – ident: e_1_2_8_20_1 doi: 10.1021/acscatal.0c01273 – ident: e_1_2_8_11_1 doi: 10.1021/acscatal.8b01046 – ident: e_1_2_8_33_1 doi: 10.1002/adfm.202111615 – ident: e_1_2_8_7_1 doi: 10.1021/acs.est.0c02680 – ident: e_1_2_8_49_4 doi: 10.1016/j.apmt.2022.101546 – ident: e_1_2_8_16_1 doi: 10.1002/adfm.202100470 |
SSID | ssj0017734 |
Score | 2.5821154 |
Snippet | Co
3
O
4
spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic... Co3O4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Atomic oxygen Catalysts Cobalt oxides Energy levels Materials science Metal-organic frameworks Nickel Poisoning (reaction inhibition) Raman spectra Relative humidity Room temperature Spinel Substitutes Transition metal oxides VOCs Volatile organic compounds |
Title | Cation Substitution Induced d‐Band Center Modulation on Cobalt‐Based Spinel Oxides for Catalytic Ozonation |
URI | https://www.proquest.com/docview/2881898588 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdZe9kOY90H69oNHQY7DG-2HMvSsctawkibQxMIuxjbklggOKW1oe2p1972N-4v2XuW_JHug24QTKIIY_R-fnpf-j1C3vIslzKNtCciYcBB8ZUnTJB5YRqpUKY8ZHUw5_iEj-fDL4toMRjc9qqWqjL7kF__9lzJ_0gVxkCueEr2HyTb3hQG4DvIF64gYbjeS8YjKz18-euMP_7AXhyY01dtGcMnjI1jFFefY-sz168LswQjJAMpexMv0Pw8A8Nz9X56uVS6JmvAU4Lp6gqZXafX66ITZUNe25QR4B7pQotgB9sF6AKrdTWfXnahAqtlvn6r1ldVcXf4tOpyRrViHKfLlWMJd0EKVpe72QPN91SFPRXMA6zGqxvpwA7VH3PHyJ3etgQaDp-WRPKX_cDyy6bKIOkAeFsBd01jNoi3T6bJ0XwySWaHi9kDss3A4wCVuX3w-Xhy2qak4tiWKDSP1zCA-uzj5v03LZzNDb62WmZPyGPnbtADi50dMtDFU_KoR0L5jBQWRbSPIupQRNWPm--IH2rxQzv8UPhY_NRTADnUIoda5FBADm2RQ1vkPCfzo8PZaOy5LhxeznhceuAxsNiPlEmlRioSXxslTJQFWikVmJzzKJcmzIRkOhd-FoJRnoKhCZa8TpHe7wXZKtaFfkmoVLEUoco1i9kw0xy8fZMbGQg5NDFXapd4zcoluaOox04pq8SSa7MEVzppV3qXvGvnn1lylj_O3G8EkbgX-CJhAqxVCUpKvPr733vkYQfqfbJVnlf6NdiiZfbGoeQnN7aOAw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cation+Substitution+Induced+d%E2%80%90Band+Center+Modulation+on+Cobalt%E2%80%90Based+Spinel+Oxides+for+Catalytic+Ozonation&rft.jtitle=Advanced+functional+materials&rft.au=Qu%2C+Wei&rft.au=Tang%2C+Zhuoyun&rft.au=Tang%2C+Su&rft.au=Wen%2C+Hailin&rft.date=2023-10-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=44&rft_id=info:doi/10.1002%2Fadfm.202301677&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |