Cation Substitution Induced d‐Band Center Modulation on Cobalt‐Based Spinel Oxides for Catalytic Ozonation

Co 3 O 4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic frameworks (MOFs)‐derived Ni‐ and Mg‐ substituted Co 3 O 4 catalysts retain similar spinel structures, but display improved and reduced ozonati...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 44
Main Authors Qu, Wei, Tang, Zhuoyun, Tang, Su, Wen, Hailin, Fang, Jingyun, Lian, Qiyu, Shu, Dong, He, Chun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 25.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Co 3 O 4 spinel is a promising transition metal oxide (TMO) catalyst for the catalytic ozonation of volatile organic compounds (VOCs). Herein, metal–organic frameworks (MOFs)‐derived Ni‐ and Mg‐ substituted Co 3 O 4 catalysts retain similar spinel structures, but display improved and reduced ozonation performance of methyl mercaptan (CH 3 SH), respectively. Remarkably, the NiCo 2 O 4 catalyst can still ≈90% removal of CH 3 SH after running for 20 h at room temperature under an initial concentration of 50 ppm CH 3 SH and 40 ppm O 3 , relative humidity of 60%, and space velocity of 300 000 mL h −1 g −1 , exceeding the reported values. Experimental characterizations have unveiled that the substitution of Ni and Mg into the Co 3 O 4 spinel altered surface acidity, oxygen species mobility, and Co 2+ /Co 3+ ratio. The in situ Raman spectra reveal the dynamic formation Co(III)‐O ad * via the transformation of O 3 into surface atomic oxygen (O ad *) and peroxide species (O 2 *). Theoretical calculations verify that Ni‐substitution increases nonuniform charges and Fermi density, leading to a moderate increase in d‐band center energy levels, thereby promoting O 3 specific adsorption/activation to convert O ad */O 2 * and •OH/ 1 O 2 /•O 2 − , which contributes to eliminate CH 3 SH and prevent poisoning. The concept of tuning the d‐band center can provide valuable insights for the design of other catalysts for catalytic ozonation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202301677