Do I Need to Trypsin Digest Before Releasing IgG Glycans With PNGase-F?
Immunoglobulin G (IgG) is the main immunoglobulin in human serum, and its biological activity is modulated by glycosylation on its fragment crystallizable region. Glycosylation of IgGs has shown to be related to aging, disease progression, protein stability, and many other vital processes. A common...
Saved in:
Published in | Journal of biomolecular techniques p. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Association of Biomolecular Resource Facilities
13.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Immunoglobulin G (IgG) is the main immunoglobulin in human serum, and its biological activity is modulated by glycosylation on its fragment crystallizable region. Glycosylation of IgGs has shown to be related to aging, disease progression, protein stability, and many other vital processes. A common approach to analyze IgG glycosylation involves the release of the N-glycans by PNGase F, which cleaves the linkage between the asparagine residue and the innermost N-acetylglucosamine (GlcNAc) of all N-glycans except those containing a 3-linked fucose attached to the core GlcNAc. The biological significance of these glycans necessitates the development of accurate methods for their characterization and quantification. Currently, researchers either perform PNGase F deglycosylation on intact or trypsin-digested IgGs. Those who perform PNGase F deglycosylation on trypsin-digested IgGs argue that proteolysis is needed to reduce steric hindrance, whereas the other group states that this step is not needed, and the proteolytic step only adds time. There is minimal experimental evidence supporting either assumption. The importance of obtaining complete glycan release for accurate quantitation led us to investigate the kinetics of this deglycosylation reaction for intact IgGs and IgG glycopeptides. Statistically significant differences in the rate of deglycosylation performed on intact IgGs and trypsin-digested IgGs were determined, and the rate of PNGase F deglycosylation on trypsin-digested IgGs was found to be 3- to 4-times faster than on intact IgG. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conflict of Interest Disclosures: The authors declare no conflict of interest. |
ISSN: | 1524-0215 1943-4731 |
DOI: | 10.7171/3fc1f5fe.6db6338a |