Do I Need to Trypsin Digest Before Releasing IgG Glycans With PNGase-F?

Immunoglobulin G (IgG) is the main immunoglobulin in human serum, and its biological activity is modulated by glycosylation on its fragment crystallizable region. Glycosylation of IgGs has shown to be related to aging, disease progression, protein stability, and many other vital processes. A common...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomolecular techniques p. 3
Main Authors Birx, Lily, Popov, Marla, Orlando, Ron
Format Journal Article
LanguageEnglish
Published United States Association of Biomolecular Resource Facilities 13.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Immunoglobulin G (IgG) is the main immunoglobulin in human serum, and its biological activity is modulated by glycosylation on its fragment crystallizable region. Glycosylation of IgGs has shown to be related to aging, disease progression, protein stability, and many other vital processes. A common approach to analyze IgG glycosylation involves the release of the N-glycans by PNGase F, which cleaves the linkage between the asparagine residue and the innermost N-acetylglucosamine (GlcNAc) of all N-glycans except those containing a 3-linked fucose attached to the core GlcNAc. The biological significance of these glycans necessitates the development of accurate methods for their characterization and quantification. Currently, researchers either perform PNGase F deglycosylation on intact or trypsin-digested IgGs. Those who perform PNGase F deglycosylation on trypsin-digested IgGs argue that proteolysis is needed to reduce steric hindrance, whereas the other group states that this step is not needed, and the proteolytic step only adds time. There is minimal experimental evidence supporting either assumption. The importance of obtaining complete glycan release for accurate quantitation led us to investigate the kinetics of this deglycosylation reaction for intact IgGs and IgG glycopeptides. Statistically significant differences in the rate of deglycosylation performed on intact IgGs and trypsin-digested IgGs were determined, and the rate of PNGase F deglycosylation on trypsin-digested IgGs was found to be 3- to 4-times faster than on intact IgG.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conflict of Interest Disclosures: The authors declare no conflict of interest.
ISSN:1524-0215
1943-4731
DOI:10.7171/3fc1f5fe.6db6338a