Deep sequencing of the human TCRγ and TCRβ repertoires suggests that TCRβ rearranges after αβ and γδ T cell commitment

T lymphocytes respond to a broad array of pathogens with the combinatorial diversity of the T cell receptor (TCR). This adaptive response is possible because of the unique structure of the TCR, which is composed of two chains, either αβ or γδ, that undergo genetic rearrangement in the thymus. αβ and...

Full description

Saved in:
Bibliographic Details
Published inScience translational medicine Vol. 3; no. 90; p. 90ra61
Main Authors Sherwood, Anna M, Desmarais, Cindy, Livingston, Robert J, Andriesen, Jessica, Haussler, Maximilian, Carlson, Christopher S, Robins, Harlan
Format Journal Article
LanguageEnglish
Published United States 06.07.2011
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:T lymphocytes respond to a broad array of pathogens with the combinatorial diversity of the T cell receptor (TCR). This adaptive response is possible because of the unique structure of the TCR, which is composed of two chains, either αβ or γδ, that undergo genetic rearrangement in the thymus. αβ and γδ T cells are functionally distinct within the host but are derived from a common multipotent precursor. The canonical model for T cell lineage commitment assumes that the γ, δ, and β chains rearrange before αβ or γδ T cell commitment. To test the standard model in humans, we used high-throughput sequencing to catalog millions of TCRγ and TCRβ chains from peripheral blood αβ and γδ T cells from three unrelated individuals. Almost all sampled αβ and γδ T cells had rearranged TCRγ sequences. Although sampled αβ T cells had a diverse repertoire of rearranged TCRβ chains, less than 4% of γδ T cells in peripheral blood had a rearranged TCRβ chain. Our data suggest that TCRγ rearranges in all T lymphocytes, consistent with TCRγ rearranging before T cell lineage commitment. However, rearrangement of the TCRβ locus appears to be restricted after T cell precursors commit to the αβ T cell lineage. Indeed, in T cell leukemias and lymphomas, TCRγ is almost always rearranged and TCRβ is only rearranged in a subset of cancers. Because high-throughput sequencing of TCRs is translated into the clinic for monitoring minimal residual for leukemia/lymphoma, our data suggest the sequencing target should be TCRγ.
ISSN:1946-6242
DOI:10.1126/scitranslmed.3002536