Influence of coating on the photoluminescence of Tb3+ doped ZnSe/ZnS core-shell quantum dots
Tb3+-doped ZnSe and ZnSe/ZnS nanocrystals were synthesized using modified hot-injection method. The observation of the characteristic quantum dots absorption features in a time-gated excitation spectrum was recorded while monitoring Tb3+ emission at 545 nm provided direct evidence for successful inc...
Saved in:
Published in | Journal of rare earths Vol. 34; no. 8; pp. 828 - 832 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Tb3+-doped ZnSe and ZnSe/ZnS nanocrystals were synthesized using modified hot-injection method. The observation of the characteristic quantum dots absorption features in a time-gated excitation spectrum was recorded while monitoring Tb3+ emission at 545 nm provided direct evidence for successful incorporation of dopant ions into semiconductor host. Relatively long decay time (-1.5 ms) of Tb3+ emission indicated that dopant ions were well protected from interaction with surface ligands. Emission properties of core ZnSe:Tb3+ nanocrystals were only slightly modified upon growth of ZnS shell. |
---|---|
Bibliography: | 11-2788/TF quantum dots; lanthanide; ZnSe; terbium; rare earths Tb3+-doped ZnSe and ZnSe/ZnS nanocrystals were synthesized using modified hot-injection method. The observation of the characteristic quantum dots absorption features in a time-gated excitation spectrum was recorded while monitoring Tb3+ emission at 545 nm provided direct evidence for successful incorporation of dopant ions into semiconductor host. Relatively long decay time (-1.5 ms) of Tb3+ emission indicated that dopant ions were well protected from interaction with surface ligands. Emission properties of core ZnSe:Tb3+ nanocrystals were only slightly modified upon growth of ZnS shell. |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(16)60101-1 |