A novel white-emitting phosphor ZnWO4:Dy3
A new white luminescent material Dy3+ doped ZnWO4 was synthesized by hydrothermal route followed by calcining proc- ess. The phase structure, morphology and luminescent properties of as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy and fluorescence spectro...
Saved in:
Published in | Journal of rare earths Vol. 33; no. 4; pp. 350 - 354 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A new white luminescent material Dy3+ doped ZnWO4 was synthesized by hydrothermal route followed by calcining proc- ess. The phase structure, morphology and luminescent properties of as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy and fluorescence spectrophotometry, respectively. The results indicated that the sample was pure ZnWO4:Dy3+ only when the pH value of the reaction system was 6. The ZnWOa:Dy3+ sample was composed of spherical particles, and the particle size was about 80-130 nm. The excitation spectrum consisted of a broad band ascribed to the charge transfer transi- tion from oxygen ligand to tungsten ion. The emission spectrum of ZnWO4:Dy3+ was composed of two major parts: the broad band attributing to the intrinsic emission of WO42- and the 4F9/2→6H15/2 transition of Dy3+, and the sharp emission peak corresponding to the 4F9/2→61-113/2 transition of Dy3+. The optimal emission intensity of the Zn1-xWOa:Dy3+x phosphors was realized when x= 1.5 mol. %. Moreover, all of the ZnI_xWOa:Dy3+ (x=0.5 mol.%, 1 mol.%, 1.5 mol.%, 2 mol.%) phosphors could exhibit white light emission, which could be potentially applied in white lighting-emitting diodes. |
---|---|
Bibliography: | white-emitting; ZnWO4:Dy3+; phosphor; luminescence; rare earths A new white luminescent material Dy3+ doped ZnWO4 was synthesized by hydrothermal route followed by calcining proc- ess. The phase structure, morphology and luminescent properties of as-synthesized samples were characterized by X-ray diffraction, scanning electron microscopy and fluorescence spectrophotometry, respectively. The results indicated that the sample was pure ZnWO4:Dy3+ only when the pH value of the reaction system was 6. The ZnWOa:Dy3+ sample was composed of spherical particles, and the particle size was about 80-130 nm. The excitation spectrum consisted of a broad band ascribed to the charge transfer transi- tion from oxygen ligand to tungsten ion. The emission spectrum of ZnWO4:Dy3+ was composed of two major parts: the broad band attributing to the intrinsic emission of WO42- and the 4F9/2→6H15/2 transition of Dy3+, and the sharp emission peak corresponding to the 4F9/2→61-113/2 transition of Dy3+. The optimal emission intensity of the Zn1-xWOa:Dy3+x phosphors was realized when x= 1.5 mol. %. Moreover, all of the ZnI_xWOa:Dy3+ (x=0.5 mol.%, 1 mol.%, 1.5 mol.%, 2 mol.%) phosphors could exhibit white light emission, which could be potentially applied in white lighting-emitting diodes. 11-2788/TF ZHAI Yongqing , LI Xuan , LIU Jia , JIANG Man (College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China) |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(14)60425-7 |