Osmoregulatory mechanisms of the Australian freshwater crocodile, Crocodylus johnstoni , in freshwater and estuarine habitats

The estuary of the Limmen Bight River in Australia's Northern Territory is home to an unusual salt water-adapted population of the Australian `freshwater' crocodile, Crocodylus johnstoni. Crocodiles were captured from tidal reaches of the estuary ranging in salinity from 0.5-24 and from se...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative physiology. B, Biochemical, systemic, and environmental physiology Vol. 169; no. 3; pp. 215 - 223
Main Authors Taplin, L. E., Grigg, G. C., Beard, L. A., Pulsford, T.
Format Journal Article
LanguageEnglish
Published 22.04.1999
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The estuary of the Limmen Bight River in Australia's Northern Territory is home to an unusual salt water-adapted population of the Australian `freshwater' crocodile, Crocodylus johnstoni. Crocodiles were captured from tidal reaches of the estuary ranging in salinity from 0.5-24 and from several permanent fresh water reaches more or less remote from saline waters. C. johnstoni is an effective osmoregulator in moderately saline waters and has osmoregulatory mechanisms very similar to its more marine-adapted relative, the estuarine crocodile Crocodylus porosus. Fasted C. johnstoni in brackish water appear to lose little sodium in cloacal urine, relying on their lingual salt glands for excretion of excess sodium chloride. The lingual glands show clear evidence of short-term and long-term acclimation to salt water. Like estuarine crocodiles, C. johnstoni drinks fresh water and will not drink sea water. Gross sodium and water fluxes in brackish water are very similar to those in other crocodilians, suggesting differences in integumental permeability are not a major influence on osmoregulatory differences between crocodilians. The data reinforce the hypothesis that crocodylids differ fundamentally from alligatorids in the structure and function of the renal-cloacal-salt gland complex and are of interest in current debate over the evolutionary and zoogeographical history of the eusuchian crocodilians.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0174-1578
1432-136X
DOI:10.1007/s003600050214