Towards Personalized Federated Learning

In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI research, there has been growing awareness and concerns of data privacy. Recent significant developments in the data regulation landscape have prompted a seismic shift in interest toward privacy-preservin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 12; pp. 9587 - 9603
Main Authors Tan, Alysa Ziying, Yu, Han, Cui, Lizhen, Yang, Qiang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI research, there has been growing awareness and concerns of data privacy. Recent significant developments in the data regulation landscape have prompted a seismic shift in interest toward privacy-preserving AI. This has contributed to the popularity of Federated Learning (FL), the leading paradigm for the training of machine learning models on data silos in a privacy-preserving manner. In this survey, we explore the domain of personalized FL (PFL) to address the fundamental challenges of FL on heterogeneous data, a universal characteristic inherent in all real-world datasets. We analyze the key motivations for PFL and present a unique taxonomy of PFL techniques categorized according to the key challenges and personalization strategies in PFL. We highlight their key ideas, challenges, opportunities, and envision promising future trajectories of research toward a new PFL architectural design, realistic PFL benchmarking, and trustworthy PFL approaches.
AbstractList In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI research, there has been growing awareness and concerns of data privacy. Recent significant developments in the data regulation landscape have prompted a seismic shift in interest toward privacy-preserving AI. This has contributed to the popularity of Federated Learning (FL), the leading paradigm for the training of machine learning models on data silos in a privacy-preserving manner. In this survey, we explore the domain of personalized FL (PFL) to address the fundamental challenges of FL on heterogeneous data, a universal characteristic inherent in all real-world datasets. We analyze the key motivations for PFL and present a unique taxonomy of PFL techniques categorized according to the key challenges and personalization strategies in PFL. We highlight their key ideas, challenges, opportunities, and envision promising future trajectories of research toward a new PFL architectural design, realistic PFL benchmarking, and trustworthy PFL approaches.In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI research, there has been growing awareness and concerns of data privacy. Recent significant developments in the data regulation landscape have prompted a seismic shift in interest toward privacy-preserving AI. This has contributed to the popularity of Federated Learning (FL), the leading paradigm for the training of machine learning models on data silos in a privacy-preserving manner. In this survey, we explore the domain of personalized FL (PFL) to address the fundamental challenges of FL on heterogeneous data, a universal characteristic inherent in all real-world datasets. We analyze the key motivations for PFL and present a unique taxonomy of PFL techniques categorized according to the key challenges and personalization strategies in PFL. We highlight their key ideas, challenges, opportunities, and envision promising future trajectories of research toward a new PFL architectural design, realistic PFL benchmarking, and trustworthy PFL approaches.
In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI research, there has been growing awareness and concerns of data privacy. Recent significant developments in the data regulation landscape have prompted a seismic shift in interest toward privacy-preserving AI. This has contributed to the popularity of Federated Learning (FL), the leading paradigm for the training of machine learning models on data silos in a privacy-preserving manner. In this survey, we explore the domain of personalized FL (PFL) to address the fundamental challenges of FL on heterogeneous data, a universal characteristic inherent in all real-world datasets. We analyze the key motivations for PFL and present a unique taxonomy of PFL techniques categorized according to the key challenges and personalization strategies in PFL. We highlight their key ideas, challenges, opportunities, and envision promising future trajectories of research toward a new PFL architectural design, realistic PFL benchmarking, and trustworthy PFL approaches.
Author Tan, Alysa Ziying
Yu, Han
Cui, Lizhen
Yang, Qiang
Author_xml – sequence: 1
  givenname: Alysa Ziying
  orcidid: 0000-0003-0084-3473
  surname: Tan
  fullname: Tan, Alysa Ziying
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Han
  orcidid: 0000-0001-6893-8650
  surname: Yu
  fullname: Yu, Han
  email: han.yu@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 3
  givenname: Lizhen
  orcidid: 0000-0002-8262-8883
  surname: Cui
  fullname: Cui, Lizhen
  email: clz@sdu.edu.cn
  organization: School of Software, Shandong University, Jinan, China
– sequence: 4
  givenname: Qiang
  orcidid: 0000-0001-5059-8360
  surname: Yang
  fullname: Yang, Qiang
  email: qyang@cse.ust.hk
  organization: Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35344498$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhep2Fr7BxSk4EEvrfuR_TpKsSqEKljB27JJJpKSJnU3QfTXu7Ufhx6cywzL8w6zzynqVHUFCJ0TPCYE69v5bBa_jimmdMyIwELrI9SjRNARZUp19rN876KB9wscSmAuIn2CuoyzKIq06qHref1lXeaHL-B8Xdmy-IFsOIUMnG3CFIN1VVF9nKHj3JYeBtveR2_T-_nkcRQ_PzxN7uJRSoVoRjYXVmDGuZA8iWQEGaZJuEdoqZIkSgnnKpG5lhljLCfYJkrmaYoVJTaB8NpHN5u9K1d_tuAbsyx8CmVpK6hbb6gIdwvKhAjo1QG6qFsXvhAopblShGsVqMst1SZLyMzKFUvrvs1OQQDUBkhd7b2D3KRFY5uirhpni9IQbNbCzZ9wsxZutsJDlB5Ed9v_DV1sQgUA7ANaRsGaYr8LQYjw
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s11633_022_1341_4
crossref_primary_10_3390_s25010019
crossref_primary_10_1051_sands_2024003
crossref_primary_10_1109_TCC_2024_3452696
crossref_primary_10_1016_j_jnca_2025_104104
crossref_primary_10_1145_3670854
crossref_primary_10_1109_ACCESS_2025_3535085
crossref_primary_10_1109_ACCESS_2025_3547627
crossref_primary_10_1007_s11704_023_3282_7
crossref_primary_10_1109_TKDE_2023_3341808
crossref_primary_10_1007_s40747_024_01636_4
crossref_primary_10_1109_TSUSC_2024_3403427
crossref_primary_10_1109_TIA_2024_3462668
crossref_primary_10_1109_TKDE_2023_3271851
crossref_primary_10_3390_su17052210
crossref_primary_10_1186_s13677_024_00721_w
crossref_primary_10_1016_j_neunet_2025_107345
crossref_primary_10_1016_j_neunet_2024_106772
crossref_primary_10_3390_app13159007
crossref_primary_10_1109_LWC_2022_3220956
crossref_primary_10_1109_TCOMM_2024_3381671
crossref_primary_10_1109_TNNLS_2024_3370297
crossref_primary_10_1145_3725527
crossref_primary_10_1109_JIOT_2024_3357779
crossref_primary_10_1051_sands_2024014
crossref_primary_10_1007_s11227_024_06476_0
crossref_primary_10_1109_MVT_2024_3451191
crossref_primary_10_1109_TCE_2024_3385440
crossref_primary_10_1109_JIOT_2023_3299947
crossref_primary_10_1088_1361_6501_ad69b5
crossref_primary_10_1109_TII_2024_3417297
crossref_primary_10_3934_mbe_2023475
crossref_primary_10_1109_TNNLS_2024_3387757
crossref_primary_10_1109_TSG_2024_3415504
crossref_primary_10_1109_TFUZZ_2023_3335361
crossref_primary_10_1109_TDSC_2024_3419211
crossref_primary_10_1109_TKDE_2024_3390041
crossref_primary_10_3390_s23167235
crossref_primary_10_1109_ACCESS_2024_3369915
crossref_primary_10_1002_tee_24049
crossref_primary_10_1109_TAI_2023_3297090
crossref_primary_10_34133_icomputing_0089
crossref_primary_10_3390_fi16030082
crossref_primary_10_1007_s10916_023_01994_5
crossref_primary_10_1109_TNNLS_2024_3417452
crossref_primary_10_1109_ACCESS_2024_3359992
crossref_primary_10_1109_TMC_2024_3507286
crossref_primary_10_1016_j_ject_2024_12_003
crossref_primary_10_1109_TII_2022_3223234
crossref_primary_10_1109_TVT_2024_3447569
crossref_primary_10_1038_s41598_023_47078_9
crossref_primary_10_1109_JIOT_2024_3391342
crossref_primary_10_1016_j_comnet_2024_110822
crossref_primary_10_1109_TVT_2024_3499349
crossref_primary_10_1038_s41746_024_01272_9
crossref_primary_10_1109_TNSM_2023_3263831
crossref_primary_10_1016_j_future_2024_04_026
crossref_primary_10_1016_j_csbj_2024_10_037
crossref_primary_10_1093_ijlct_ctae283
crossref_primary_10_1109_TMC_2024_3396218
crossref_primary_10_1109_ACCESS_2024_3422211
crossref_primary_10_1109_JIOT_2024_3448626
crossref_primary_10_1007_s00530_024_01422_9
crossref_primary_10_3390_bs15010027
crossref_primary_10_1007_s10489_022_04065_3
crossref_primary_10_1109_JIOT_2024_3413780
crossref_primary_10_1109_MCOM_001_2300272
crossref_primary_10_1016_j_knosys_2024_112276
crossref_primary_10_1016_j_eswa_2024_124742
crossref_primary_10_33012_navi_688
crossref_primary_10_1145_3558005
crossref_primary_10_1109_TSUSC_2023_3341836
crossref_primary_10_1109_ACCESS_2023_3299443
crossref_primary_10_1109_JIOT_2024_3385479
crossref_primary_10_1109_TMC_2024_3449129
crossref_primary_10_1145_3690822
crossref_primary_10_1109_JRFID_2022_3218288
crossref_primary_10_1186_s13677_023_00535_2
crossref_primary_10_1109_TETC_2024_3471458
crossref_primary_10_3390_app14020586
crossref_primary_10_1007_s00521_024_09803_x
crossref_primary_10_1039_D4EW00685B
crossref_primary_10_1109_JSTSP_2024_3497660
crossref_primary_10_1109_ACCESS_2024_3413069
crossref_primary_10_1016_j_knosys_2023_110741
crossref_primary_10_3390_fi17010018
crossref_primary_10_1109_TMC_2024_3361876
crossref_primary_10_1109_LWC_2024_3482318
crossref_primary_10_1109_TPAMI_2024_3470072
crossref_primary_10_1109_TWC_2023_3339824
crossref_primary_10_1016_j_neucom_2025_130013
crossref_primary_10_1145_3638252
crossref_primary_10_1109_TMC_2024_3464512
crossref_primary_10_1109_JBHI_2024_3428512
crossref_primary_10_1109_TSIPN_2023_3325963
crossref_primary_10_1007_s10586_024_04714_x
crossref_primary_10_1007_s40974_024_00323_x
crossref_primary_10_1109_TMI_2024_3483221
crossref_primary_10_1145_3625558
crossref_primary_10_1109_TCE_2024_3378159
crossref_primary_10_1007_s00607_024_01405_8
crossref_primary_10_1007_s11063_023_11264_7
crossref_primary_10_1016_j_inffus_2024_102834
crossref_primary_10_1186_s13636_023_00299_2
crossref_primary_10_1109_JAS_2024_124215
crossref_primary_10_1109_TNNLS_2024_3394252
crossref_primary_10_1038_s41598_024_80048_3
crossref_primary_10_1109_JIOT_2024_3433460
crossref_primary_10_1109_JIOT_2024_3403256
crossref_primary_10_1109_COMST_2024_3399612
crossref_primary_10_1109_JRFID_2024_3390142
crossref_primary_10_1016_j_future_2024_06_049
crossref_primary_10_1109_JIOT_2024_3362587
crossref_primary_10_1016_j_measurement_2024_116275
crossref_primary_10_1109_JIOT_2024_3435994
crossref_primary_10_1016_j_ins_2024_120825
crossref_primary_10_1109_TMC_2024_3483272
crossref_primary_10_3390_fi16050164
crossref_primary_10_1364_OL_530189
crossref_primary_10_3389_fdgth_2024_1495999
crossref_primary_10_1145_3708983
crossref_primary_10_1109_TMC_2024_3453657
crossref_primary_10_26599_BDMA_2024_9020035
crossref_primary_10_1109_JIOT_2022_3228727
crossref_primary_10_1109_JSAC_2023_3345431
crossref_primary_10_1287_ijds_2024_0029
crossref_primary_10_1145_3678182
crossref_primary_10_1109_JSTSP_2022_3231527
crossref_primary_10_3390_app132312962
crossref_primary_10_3390_electronics14030410
crossref_primary_10_1109_ACCESS_2024_3349691
crossref_primary_10_1109_ACCESS_2024_3357514
crossref_primary_10_1109_TCCN_2024_3394889
crossref_primary_10_1109_TMC_2024_3466227
crossref_primary_10_1109_TNSM_2023_3278023
crossref_primary_10_1145_3706058
crossref_primary_10_1007_s11063_023_11420_z
crossref_primary_10_3390_fi15120403
crossref_primary_10_1016_j_ins_2024_120760
crossref_primary_10_1109_TMLCN_2025_3528901
crossref_primary_10_1007_s42979_024_03137_0
crossref_primary_10_1371_journal_pdig_0000117
crossref_primary_10_1109_TMC_2024_3487294
crossref_primary_10_1109_TSC_2024_3436695
crossref_primary_10_3390_jsan14010009
crossref_primary_10_1109_OJCOMS_2024_3458088
crossref_primary_10_1016_j_bspc_2024_106068
crossref_primary_10_1080_24725854_2022_2157912
crossref_primary_10_1016_j_enbuild_2024_114176
crossref_primary_10_1109_TMC_2024_3509852
crossref_primary_10_3390_app142210547
crossref_primary_10_3390_s23156986
crossref_primary_10_1109_TPDS_2023_3294688
crossref_primary_10_1109_TII_2024_3452229
crossref_primary_10_1109_TBDATA_2022_3191439
crossref_primary_10_1007_s13042_022_01647_y
crossref_primary_10_1016_j_compchemeng_2024_108749
crossref_primary_10_1007_s40012_023_00382_1
crossref_primary_10_1109_TIFS_2025_3531143
crossref_primary_10_1109_TETCI_2023_3251404
crossref_primary_10_1109_TKDE_2024_3352628
crossref_primary_10_1109_TGRS_2024_3370584
crossref_primary_10_1109_TMC_2024_3427636
crossref_primary_10_1007_s00530_025_01719_3
crossref_primary_10_1109_JIOT_2024_3443467
crossref_primary_10_1007_s11227_024_06529_4
crossref_primary_10_1145_3659205
crossref_primary_10_3390_en16176377
crossref_primary_10_1109_TMC_2024_3374706
crossref_primary_10_1016_j_dt_2024_12_024
crossref_primary_10_1109_TETC_2024_3390811
crossref_primary_10_1088_2632_2153_ada0a6
crossref_primary_10_1016_j_neunet_2024_106230
crossref_primary_10_1109_TII_2024_3380742
crossref_primary_10_1145_3656165
crossref_primary_10_1109_JRFID_2022_3209657
crossref_primary_10_1109_COMST_2022_3221119
crossref_primary_10_1109_JSTSP_2023_3343626
crossref_primary_10_1007_s10462_023_10417_3
crossref_primary_10_1007_s11704_024_40065_x
crossref_primary_10_1016_j_sasc_2025_200212
crossref_primary_10_1016_j_isci_2024_110943
crossref_primary_10_3390_math13061004
crossref_primary_10_3390_s24010088
crossref_primary_10_3390_electronics13173538
crossref_primary_10_1109_TCC_2024_3482865
crossref_primary_10_1016_j_patter_2023_100913
crossref_primary_10_3390_network5010001
crossref_primary_10_1109_TIFS_2025_3539087
crossref_primary_10_1109_TC_2024_3353455
crossref_primary_10_2197_ipsjjip_32_1033
crossref_primary_10_1109_TPDS_2025_3539738
crossref_primary_10_1145_3704633
crossref_primary_10_3390_electronics13030527
crossref_primary_10_1109_ACCESS_2025_3532853
crossref_primary_10_1109_TCOMM_2024_3396748
crossref_primary_10_1109_ACCESS_2024_3508030
crossref_primary_10_1109_TII_2024_3393492
crossref_primary_10_1109_TSP_2024_3514802
crossref_primary_10_1109_TPDS_2022_3225185
crossref_primary_10_1007_s10462_023_10563_8
crossref_primary_10_1016_j_jprocont_2023_103038
crossref_primary_10_1016_j_future_2024_107594
crossref_primary_10_1109_JIOT_2024_3420696
crossref_primary_10_1109_JIOT_2023_3279273
crossref_primary_10_5753_jisa_2024_3826
crossref_primary_10_1016_j_displa_2023_102504
crossref_primary_10_1109_TIM_2023_3341116
crossref_primary_10_1007_s12194_024_00827_5
crossref_primary_10_1109_TPDS_2024_3411815
crossref_primary_10_1145_3643560
crossref_primary_10_1016_j_iot_2024_101318
crossref_primary_10_1109_TMI_2023_3234450
crossref_primary_10_1109_TSUSC_2023_3279111
crossref_primary_10_1016_j_eswa_2024_125336
crossref_primary_10_3390_electronics13091772
crossref_primary_10_1109_TIFS_2024_3416042
crossref_primary_10_1109_TNNLS_2024_3349400
crossref_primary_10_1145_3697836
crossref_primary_10_1016_j_segan_2024_101537
crossref_primary_10_1016_j_media_2024_103121
crossref_primary_10_1016_j_apenergy_2024_123016
crossref_primary_10_1007_s10489_023_04753_8
crossref_primary_10_1038_s41598_024_73863_1
crossref_primary_10_26634_jfet_19_4_20913
crossref_primary_10_1145_3649316
crossref_primary_10_3390_app142412024
crossref_primary_10_1109_JIOT_2024_3407584
crossref_primary_10_1145_3560816
crossref_primary_10_1016_j_ogla_2024_08_004
crossref_primary_10_1109_ACCESS_2024_3514972
crossref_primary_10_1109_TNNLS_2024_3360429
crossref_primary_10_1007_s10723_025_09796_4
crossref_primary_10_1109_JIOT_2022_3233599
crossref_primary_10_1145_3725221
crossref_primary_10_1109_COMST_2024_3393230
crossref_primary_10_1007_s11432_024_4254_5
crossref_primary_10_1007_s12145_024_01438_9
crossref_primary_10_1049_blc2_12054
crossref_primary_10_1109_TMC_2024_3437468
Cites_doi 10.1109/ICIP40778.2020.9190968
10.1609/aaai.v30i1.10306
10.1038/s41598-020-69250-1
10.1038/s41591-021-01506-3
10.1109/MIS.2020.2988604
10.1073/pnas.1611835114
10.1038/s41586-021-03583-3
10.1109/CVPR42600.2020.00756
10.1109/CVPR46437.2021.01057
10.1145/3387107
10.1109/IJCNN.2008.4633969
10.1109/NCA51143.2020.9306745
10.1007/978-3-030-32813-9_3
10.1016/j.jnca.2018.05.003
10.1016/j.future.2020.10.007
10.1109/INFOCOM41043.2020.9155494
10.1109/IJCNN52387.2021.9533876
10.1038/s42256-020-0186-1
10.1109/TNNLS.2019.2953131
10.1109/TPAMI.2021.3057446
10.1007/s40747-020-00247-z
10.1109/TNNLS.2022.3216981
10.1145/3461702.3462533
10.1145/3510540
10.1145/3369583.3392686
10.1109/5.726791
10.1016/j.inffus.2019.12.012
10.1145/3457607
10.1109/TNNLS.2020.3015958
10.1109/OJCS.2020.2993259
10.1109/TMC.2020.3045266
10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042
10.1109/TETC.2021.3063517
10.1109/TPDS.2020.3009406
10.1609/aaai.v36i8.20825
10.1109/COMST.2020.2986024
10.1109/MSP.2020.2975749
10.48550/arXiv.1503.02531
10.1007/978-3-319-57959-7
10.1109/TKDE.2009.191
10.1109/ICCV.2015.425
10.1109/TPDS.2020.2996273
10.1609/aaai.v32i1.11651
10.1007/978-3-030-58607-2_5
10.18653/v1/2020.emnlp-main.165
10.1109/TKDE.2018.2876857
10.1109/ACCESS.2018.2870052
10.1007/978-981-16-1160-5_14
10.1613/jair.953
10.1109/IJCNN48605.2020.9207469
10.3390/e22030314
10.1109/IJCNN.2017.7966217
10.1145/3298981
10.1109/TPAMI.2021.3079209
10.1609/aaai.v35i9.16960
10.1109/SRDS51746.2020.00017
10.1109/BigData55660.2022.10020232
10.1561/2200000083
10.1007/978-3-030-62579-5_6
10.1145/3290605.3300830
10.1109/TNSE.2020.2996612
10.23919/EUSIPCO54536.2021.9616052
10.1016/j.jbi.2019.103291
10.1109/CVPR42600.2020.00206
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3160699
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 9603
ExternalDocumentID 35344498
10_1109_TNNLS_2022_3160699
9743558
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Shandong Provincial Key Research and Development Program through the Major Scientific and Technological Innovation Project
  grantid: 2021CXGC010108
– fundername: Nanyang Assistant Professorship;
– fundername: AI Singapore Program, National Research Foundation, Singapore
  grantid: AISG2-RP-2020-019
  funderid: 10.13039/501100001381
– fundername: RIE 2020 Advanced Manufacturing and Engineering Programmatic Fund, Singapore
  grantid: A20G8b0102
– fundername: Hong Kong RGC TRS
  grantid: T41-603/20-R
– fundername: Nanyang Technological University, Singapore
  funderid: 10.13039/501100001475
– fundername: Joint SDU-NTU Centre for Artificial Intelligence Research
  grantid: NSC-2019-011
– fundername: Alibaba Group through the Alibaba Innovative Research Program and the Alibaba-NTU Singapore Joint Research Institute
  grantid: Alibaba-NTU-AIR2019B1
– fundername: National Key Research and Development Program of China
  grantid: 2021YFF0900800; 2018AAA0101100
  funderid: 10.13039/501100012166
– fundername: SDNSFC
  grantid: ZR2019LZH008
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c266t-af6a60355675b474ed02b3886978bb4c1558b7f97d333f10ab87fcc0821abe7d3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Thu Jul 10 18:28:33 EDT 2025
Sun Jun 29 12:34:07 EDT 2025
Thu Apr 03 07:09:35 EDT 2025
Tue Jul 01 00:27:45 EDT 2025
Thu Apr 24 22:54:43 EDT 2025
Wed Aug 27 02:07:45 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-af6a60355675b474ed02b3886978bb4c1558b7f97d333f10ab87fcc0821abe7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6893-8650
0000-0001-5059-8360
0000-0003-0084-3473
0000-0002-8262-8883
PMID 35344498
PQID 2895881598
PQPubID 85436
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2022_3160699
crossref_primary_10_1109_TNNLS_2022_3160699
pubmed_primary_35344498
ieee_primary_9743558
proquest_journals_2895881598
proquest_miscellaneous_2644962366
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Lin (ref97)
Vepakomma (ref50) 2018
ref53
Khodak (ref40); 32
ref52
ref54
He (ref57); 33
Bistritz (ref58); 33
ref51
Li (ref88)
ref45
ref41
ref44
ref43
ref49
ref8
ref7
ref4
ref3
ref6
ref5
Shoham (ref62) 2019
ref100
ref101
Dinh (ref39); 33
Li (ref13)
Harry Hsu (ref86) 2019
Hanzely (ref63) 2020
ref31
ref30
Fallah (ref38)
Tonekaboni (ref111)
ref33
ref32
Fallah (ref37); 33
Li (ref42) 2019
Nichol (ref35) 2018
Corinzia (ref60) 2019
Luo (ref82) 2019
ref24
ref23
ref26
ref25
McMahan (ref9)
ref28
Wang (ref92)
ref27
Mansour (ref17) 2020
Li (ref106)
Pu Liang (ref48) 2020
Li (ref29); 2
ref15
ref14
ref96
ref11
ref99
ref10
ref98
ref16
ref19
ref18
Diao (ref65)
Arivazhagan (ref46) 2019
ref93
ref95
ref94
ref91
ref90
Bui (ref47) 2019
Ghosh (ref68); 33
Caldas (ref79) 2018
ref81
ref84
ref83
He (ref78) 2021
ref80
ref108
Xie (ref72) 2020
Wang (ref87) 2019
ref109
ref75
ref104
ref74
ref77
ref102
ref76
ref103
ref2
ref1
Zhang (ref107) 2020
Krizhevsky (ref85) 2009
Kubat (ref20)
Smith (ref59); 30
Divi (ref89) 2021
Jeong (ref22) 2018
Zhao (ref21) 2018
ref70
ref112
ref73
ref110
Finn (ref34)
Vassilvitskii (ref71)
ref67
Lin (ref56); 33
ref69
Jiang (ref36) 2019
ref66
Zhu (ref55)
Deng (ref64) 2020
Mohri (ref105)
Karimireddy (ref12)
ref61
References_xml – ident: ref30
  doi: 10.1109/ICIP40778.2020.9190968
– year: 2019
  ident: ref62
  article-title: Overcoming forgetting in federated learning on non-IID data
  publication-title: arXiv:1910.07796
– ident: ref45
  doi: 10.1609/aaai.v30i1.10306
– ident: ref3
  doi: 10.1038/s41598-020-69250-1
– ident: ref4
  doi: 10.1038/s41591-021-01506-3
– ident: ref43
  doi: 10.1109/MIS.2020.2988604
– ident: ref31
  doi: 10.1073/pnas.1611835114
– ident: ref2
  doi: 10.1038/s41586-021-03583-3
– ident: ref73
  doi: 10.1109/CVPR42600.2020.00756
– volume: 2
  start-page: 429
  volume-title: Proc. Mach. Learn. Syst.
  ident: ref29
  article-title: Federated optimization in heterogeneous networks
– year: 2020
  ident: ref63
  article-title: Federated learning of a mixture of global and local models
  publication-title: arXiv:2002.05516
– year: 2018
  ident: ref35
  article-title: On first-order meta-learning algorithms
  publication-title: arXiv:1803.02999
– ident: ref32
  doi: 10.1109/CVPR46437.2021.01057
– ident: ref6
  doi: 10.1145/3387107
– year: 2020
  ident: ref107
  article-title: Hierarchically fair federated learning
  publication-title: arXiv:2004.10386
– ident: ref19
  doi: 10.1109/IJCNN.2008.4633969
– ident: ref10
  doi: 10.1109/NCA51143.2020.9306745
– ident: ref76
  doi: 10.1007/978-3-030-32813-9_3
– ident: ref49
  doi: 10.1016/j.jnca.2018.05.003
– start-page: 1273
  volume-title: Proc. AISTATS
  ident: ref9
  article-title: Communication-efficient learning of deep networks from decentralized data
– year: 2020
  ident: ref48
  article-title: Think locally, act globally: Federated learning with local and global representations
  publication-title: arXiv:2001.01523
– ident: ref15
  doi: 10.1016/j.future.2020.10.007
– year: 2019
  ident: ref60
  article-title: Variational federated multi-task learning
  publication-title: arXiv:1906.06268
– ident: ref25
  doi: 10.1109/INFOCOM41043.2020.9155494
– ident: ref28
  doi: 10.1109/IJCNN52387.2021.9533876
– volume: 33
  start-page: 3557
  volume-title: Proc. NIPS
  ident: ref37
  article-title: Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach
– ident: ref1
  doi: 10.1038/s42256-020-0186-1
– volume: 30
  start-page: 4427
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref59
  article-title: Federated multi-task learning
– year: 2020
  ident: ref72
  article-title: Multi-center federated learning
  publication-title: arXiv:2005.01026
– ident: ref98
  doi: 10.1109/TNNLS.2019.2953131
– year: 2019
  ident: ref36
  article-title: Improving federated learning personalization via model agnostic meta learning
  publication-title: arXiv:1909.12488
– year: 2019
  ident: ref87
  article-title: Federated evaluation of on-device personalization
  publication-title: arXiv:1910.10252
– year: 2020
  ident: ref64
  article-title: Adaptive personalized federated learning
  publication-title: arXiv:2003.13461
– ident: ref96
  doi: 10.1109/TPAMI.2021.3057446
– ident: ref93
  doi: 10.1007/s40747-020-00247-z
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref65
  article-title: Heterofl: Computation and communication efficient federated learning for heterogeneous clients
– ident: ref16
  doi: 10.1109/TNNLS.2022.3216981
– start-page: 179
  volume-title: Proc. ICML
  ident: ref20
  article-title: Addressing the curse of imbalanced training sets: One-sided selection
– volume: 33
  start-page: 2351
  volume-title: Proc. NIPS
  ident: ref56
  article-title: Ensemble distillation for robust model fusion in federated learning
– ident: ref112
  doi: 10.1145/3461702.3462533
– ident: ref77
  doi: 10.1145/3510540
– year: 2019
  ident: ref86
  article-title: Measuring the effects of non-identical data distribution for federated visual classification
  publication-title: arXiv:1909.06335
– ident: ref27
  doi: 10.1145/3369583.3392686
– ident: ref84
  doi: 10.1109/5.726791
– ident: ref110
  doi: 10.1016/j.inffus.2019.12.012
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref97
  article-title: Deep gradient compression: Reducing the communication bandwidth for distributed training
– year: 2018
  ident: ref21
  article-title: Federated learning with non-IID data
  publication-title: arXiv:1806.00582
– ident: ref103
  doi: 10.1145/3457607
– volume: 33
  start-page: 19586
  volume-title: Proc. NIPS
  ident: ref68
  article-title: An efficient framework for clustered federated learning
– ident: ref66
  doi: 10.1109/TNNLS.2020.3015958
– ident: ref94
  doi: 10.1109/OJCS.2020.2993259
– year: 2018
  ident: ref79
  article-title: LEAF: A benchmark for federated settings
  publication-title: arXiv:1812.01097
– year: 2019
  ident: ref42
  article-title: FedMD: Heterogenous federated learning via model distillation
  publication-title: arXiv:1910.03581
– ident: ref24
  doi: 10.1109/TMC.2020.3045266
– ident: ref70
  doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00042
– volume: 32
  start-page: 5917
  volume-title: Proc. NIPS
  ident: ref40
  article-title: Adaptive gradient-based meta-learning methods
– ident: ref102
  doi: 10.1109/TETC.2021.3063517
– start-page: 359
  volume-title: Proc. MLHC
  ident: ref111
  article-title: What clinicians want: Contextualizing explainable machine learning for clinical end use
– ident: ref23
  doi: 10.1109/TPDS.2020.3009406
– ident: ref51
  doi: 10.1609/aaai.v36i8.20825
– ident: ref11
  doi: 10.1109/COMST.2020.2986024
– ident: ref14
  doi: 10.1109/MSP.2020.2975749
– volume: 33
  start-page: 21394
  volume-title: Proc. Adv. Neural Inf. Process. Syst. (NIPS)
  ident: ref39
  article-title: Personalized federated learning with Moreau envelopes
– ident: ref54
  doi: 10.48550/arXiv.1503.02531
– ident: ref5
  doi: 10.1007/978-3-319-57959-7
– ident: ref41
  doi: 10.1109/TKDE.2009.191
– ident: ref81
  doi: 10.1109/ICCV.2015.425
– ident: ref108
  doi: 10.1109/TPDS.2020.2996273
– ident: ref95
  doi: 10.1609/aaai.v32i1.11651
– start-page: 1082
  volume-title: Proc. AISTATS
  ident: ref38
  article-title: On the convergence theory of gradient-based model-agnostic meta-learning algorithms
– ident: ref83
  doi: 10.1007/978-3-030-58607-2_5
– ident: ref90
  doi: 10.18653/v1/2020.emnlp-main.165
– ident: ref99
  doi: 10.1109/TKDE.2018.2876857
– year: 2020
  ident: ref17
  article-title: Three approaches for personalization with applications to federated learning
  publication-title: arXiv:2002.10619
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref92
  article-title: Federated learning with matched averaging
– ident: ref109
  doi: 10.1109/ACCESS.2018.2870052
– start-page: 1126
  volume-title: Proc. ICML
  ident: ref34
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– ident: ref75
  doi: 10.1007/978-981-16-1160-5_14
– year: 2018
  ident: ref22
  article-title: Communication-efficient on-device machine learning: Federated distillation and augmentation under non-IID private data
  publication-title: arXiv:1811.11479
– year: 2019
  ident: ref47
  article-title: Federated user representation learning
  publication-title: arXiv:1909.12535
– ident: ref18
  doi: 10.1613/jair.953
– volume-title: MIT and NYU
  year: 2009
  ident: ref85
  article-title: Learning multiple layers of features from tiny images
– ident: ref67
  doi: 10.1109/IJCNN48605.2020.9207469
– year: 2019
  ident: ref46
  article-title: Federated learning with personalization layers
  publication-title: arXiv:1912.00818
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref106
  article-title: Fair resource allocation in federated learning
– ident: ref91
  doi: 10.3390/e22030314
– ident: ref80
  doi: 10.1109/IJCNN.2017.7966217
– year: 2021
  ident: ref78
  article-title: FedGraphNN: A federated learning system and benchmark for graph neural networks
  publication-title: arXiv:2104.07145
– ident: ref7
  doi: 10.1145/3298981
– ident: ref33
  doi: 10.1109/TPAMI.2021.3079209
– ident: ref61
  doi: 10.1609/aaai.v35i9.16960
– volume-title: ICML
  ident: ref55
  article-title: Data-free knowledge distillation for heterogeneous federated learning
– ident: ref52
  doi: 10.1109/SRDS51746.2020.00017
– ident: ref53
  doi: 10.1145/3298981
– ident: ref101
  doi: 10.1109/BigData55660.2022.10020232
– ident: ref8
  doi: 10.1561/2200000083
– start-page: 5132
  volume-title: Proc. ICML
  ident: ref12
  article-title: SCAFFOLD: Stochastic controlled averaging for federated learning
– start-page: 1
  volume-title: Proc. ICLR
  ident: ref13
  article-title: On the convergence of FedAvg on non-IID data
– year: 2018
  ident: ref50
  article-title: Split learning for health: Distributed deep learning without sharing raw patient data
  publication-title: arXiv:1812.00564
– start-page: 4615
  volume-title: Proc. ICML
  ident: ref105
  article-title: Agnostic federated learning
– ident: ref100
  doi: 10.1007/978-3-030-62579-5_6
– ident: ref104
  doi: 10.1145/3290605.3300830
– ident: ref44
  doi: 10.1109/TNSE.2020.2996612
– ident: ref26
  doi: 10.23919/EUSIPCO54536.2021.9616052
– year: 2019
  ident: ref82
  article-title: Real-world image datasets for federated learning
  publication-title: arXiv:1910.11089
– start-page: 6357
  volume-title: Proc. ICML
  ident: ref88
  article-title: Ditto: Fair and robust federated learning through personalization
– volume: 33
  start-page: 14068
  volume-title: Proc. NIPS
  ident: ref57
  article-title: Group knowledge transfer: Federated learning of large cnns at the edge
– year: 2021
  ident: ref89
  article-title: New metrics to evaluate the performance and fairness of personalized federated learning
  publication-title: arXiv:2107.13173
– start-page: 1027
  volume-title: Proc. ACM-SIAM
  ident: ref71
  article-title: K-means: The advantages of careful seeding
– volume: 33
  start-page: 22593
  volume-title: Proc. NIPS
  ident: ref58
  article-title: Distributed distillation for on-device learning
– ident: ref69
  doi: 10.1016/j.jbi.2019.103291
– ident: ref74
  doi: 10.1109/CVPR42600.2020.00206
SSID ssj0000605649
Score 2.7540824
Snippet In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI research, there has been growing awareness and concerns of data...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9587
SubjectTerms Adaptation models
Architectural design
Artificial intelligence
Collaborative work
Customization
Data models
Data privacy
Edge computing
Federated learning
federated learning (FL)
Machine learning
non-IID data
personalized FL (PFL)
Privacy
privacy preservation
Servers
statistical heterogeneity
Taxonomy
Training
Title Towards Personalized Federated Learning
URI https://ieeexplore.ieee.org/document/9743558
https://www.ncbi.nlm.nih.gov/pubmed/35344498
https://www.proquest.com/docview/2895881598
https://www.proquest.com/docview/2644962366
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7Mnbw4df6YTqkgeNBuaZKl6VHEMcQNwQ12K02belA6ce1lf70v6Q9QVLyVJm3TvIR8X_Le9wAujfh1EFDfjRRTLsc1x0WuIlwqZUpShATEJpuYzsRkwR-Wo2ULbppYGK21dT7TA3Npz_KTVVyYrbIhYl-jBr4FW0jcylitZj-FIC4XFu1ST1CXMn9Zx8iQYDifzR6fkQ1SiiQVMXtg1ELZiHHOA_llSbI5Vn6Hm3bZGXdgWje49DZ5HRS5GsSbb1qO__2jXdip8KdzWw6YPWjpbB86dW4Hp5rqXbiaW3_atfNUo_WNTpyxkZ5AdJo4lS7rywEsxvfzu4lbJVVwY1yLczdKRSQIfhSZguI-1wmhikkp0ERK8RjxhVR-GvgJYyz1SKSkn8YxIgUvUhrvHkI7W2X6GBwvZjzxPGViXTlRQsoE6VqSypFvNHVoD7y6X8O4Uhw3iS_eQss8SBBas4TGLGFllh5cN8-8l3obf9bumj5talbd2YN-bb6wmpLrEJklNhTRGxZfNMU4mcwJSZTpVYF1EB0GCAiF6MFRafbm3fVoOfn5m6ewbTLRl54ufWjnH4U-Q7ySq3M7UD8BpAbfdg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOhFVPxAUWdi4kEHXVu67miMBBWIiZBwW9at86ABI3Dhr_e1-0g0arwta7d-vDbv99r3fg_gwpBfBwH13Ugx5XLUOS7aKsKlUqYkRUhAbLKJwVD0xvxh0plU4LqMhdFaW-cz3TKP9i4_mcVLc1TWRuxr2MDXYB31fodm0VrliQpBZC4s3qWeoC5l_qSIkiFBezQc9p_RHqQUzVRE7YHhC2UdxjkP5BelZLOs_A44reLp1mBQdDnzN3ltLReqFa--sTn-d0zbsJUjUOcmWzI7UNHTXagV2R2cfLPX4XJkPWrnzlOB11c6cbqGfALxaeLkzKwvezDu3o1ue26eVsGNURsv3CgVkSDYKNoKivtcJ4QqJqVAISnFY0QYUvlp4CeMsdQjkZJ-GseIFbxIaXy7D9XpbKoPwfFixhPPUybalRMlpEzQYEtS2fENqw5tgFfMaxjnnOMm9cVbaG0PEoRWLKERS5iLpQFX5TfvGePGn7XrZk7Lmvl0NqBZiC_MN-U8RNsSO4r4DYvPy2LcTuaOJJrq2RLrID4MEBIK0YCDTOzlv4vVcvRzm2ew0RsN-mH_fvh4DJsmL33m99KE6uJjqU8QvSzUqV20n3y_4sA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Personalized+Federated+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Tan%2C+Alysa+Ziying&rft.au=Yu%2C+Han&rft.au=Cui%2C+Lizhen&rft.au=Yang%2C+Qiang&rft.date=2023-12-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=34&rft.issue=12&rft.spage=9587&rft_id=info:doi/10.1109%2FTNNLS.2022.3160699&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon