Towards Personalized Federated Learning

In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI research, there has been growing awareness and concerns of data privacy. Recent significant developments in the data regulation landscape have prompted a seismic shift in interest toward privacy-preservin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 34; no. 12; pp. 9587 - 9603
Main Authors Tan, Alysa Ziying, Yu, Han, Cui, Lizhen, Yang, Qiang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI research, there has been growing awareness and concerns of data privacy. Recent significant developments in the data regulation landscape have prompted a seismic shift in interest toward privacy-preserving AI. This has contributed to the popularity of Federated Learning (FL), the leading paradigm for the training of machine learning models on data silos in a privacy-preserving manner. In this survey, we explore the domain of personalized FL (PFL) to address the fundamental challenges of FL on heterogeneous data, a universal characteristic inherent in all real-world datasets. We analyze the key motivations for PFL and present a unique taxonomy of PFL techniques categorized according to the key challenges and personalization strategies in PFL. We highlight their key ideas, challenges, opportunities, and envision promising future trajectories of research toward a new PFL architectural design, realistic PFL benchmarking, and trustworthy PFL approaches.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3160699