Deep Joint Source-Channel Coding for Wireless Image Transmission

We propose a joint source and channel coding (JSCC) technique for wireless image transmission that does not rely on explicit codes for either compression or error correction; instead, it directly maps the image pixel values to the complex-valued channel input symbols. We parameterize the encoder and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive communications and networking Vol. 5; no. 3; pp. 567 - 579
Main Authors Bourtsoulatze, Eirina, Burth Kurka, David, Gunduz, Deniz
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a joint source and channel coding (JSCC) technique for wireless image transmission that does not rely on explicit codes for either compression or error correction; instead, it directly maps the image pixel values to the complex-valued channel input symbols. We parameterize the encoder and decoder functions by two convolutional neural networks (CNNs), which are trained jointly, and can be considered as an autoencoder with a non-trainable layer in the middle that represents the noisy communication channel. Our results show that the proposed deep JSCC scheme outperforms digital transmission concatenating JPEG or JPEG2000 compression with a capacity achieving channel code at low signal-to-noise ratio (SNR) and channel bandwidth values in the presence of additive white Gaussian noise (AWGN). More strikingly, deep JSCC does not suffer from the "cliff effect," and it provides a graceful performance degradation as the channel SNR varies with respect to the SNR value assumed during training. In the case of a slow Rayleigh fading channel, deep JSCC learns noise resilient coded representations and significantly outperforms separation-based digital communication at all SNR and channel bandwidth values.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2332-7731
2332-7731
DOI:10.1109/TCCN.2019.2919300