Energy transfer from Tb3+ to Eu3+ ions sorbed on SrTiO3 surface

The energy transfer at room temperature between Tb3+ and Eu3+ ions sorbed onto SrTiO3 powders is investigated, using Time-Resolved Laser-induced Fluorescence Spectroscopy (TRLFS). Several published works deal with the energy transfer between two lanthanide ions in co-doped matrices but it is the fir...

Full description

Saved in:
Bibliographic Details
Published inJournal of luminescence Vol. 132; no. 5; pp. 1299 - 1306
Main Authors García-Rosales, G., Mercier-Bion, F., Drot, R., Lagarde, G., Roques, J., Simoni, E.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.05.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The energy transfer at room temperature between Tb3+ and Eu3+ ions sorbed onto SrTiO3 powders is investigated, using Time-Resolved Laser-induced Fluorescence Spectroscopy (TRLFS). Several published works deal with the energy transfer between two lanthanide ions in co-doped matrices but it is the first time that transfer processes between two lanthanide ions sorbed on a solid surface is reported. The results show that the energy transfer between sorbed Tb3+ and Eu3+ ions on strontium titanate is a non-radiative process and follows a dipole–dipole type interaction. Moreover, the higher the acceptor ions Eu3+ concentration, the more efficient the energy transfer. It is shown that no energy migration between the Tb3+ donor ions occurs. A formalism based on the model of Inokuti–Hirayama is used and allows one to fit the non-exponential Tb3+ fluorescence decay. It is thus possible to evaluate the critical radius (R0) of the influence sphere of the sorbed Tb3+ ions. According to the previous works, two sorption sites are considered for the sorbed rare-earth. The calculated radii are similar to those obtained for other couples of donor–acceptor lanthanide ions reported in the literature.
ISSN:0022-2313
1872-7883
DOI:10.1016/j.jlumin.2011.11.034