Aldo-keto synthesis effect on Eu3+fluorescence in YBO3 compared with solid state diffusion
The red-orange emitting phosphor YBO3:Eu3+was prepared by aldo-keto method and solid state diffusion. Aldo-keto method implied to decrease the processing time and heating temperature. The red-orange emitting phosphor was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), a...
Saved in:
Published in | Journal of rare earths Vol. 33; no. 5; pp. 486 - 490 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The red-orange emitting phosphor YBO3:Eu3+was prepared by aldo-keto method and solid state diffusion. Aldo-keto method implied to decrease the processing time and heating temperature. The red-orange emitting phosphor was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as emission and excitation photoluminescence spectra re-corded at room temperature. The result of aldo-keto method showed that the phosphor YBO3:Eu3+could be obtained at 900 °C in less time~60%as compared to solid state diffusion (SSD). The material showed that the strongest emission peak at 595 nm under excitation at 233 nm was only due to forced magnetic dipole 5D0→7F1 transition of Eu3+ions. Significantly, the emission inten-sity of YBO3:Eu3+phosphor prepared by aldo-keto method was relatively higher as compared to that obtained by the solid state diffusion. |
---|---|
Bibliography: | The red-orange emitting phosphor YBO3:Eu3+was prepared by aldo-keto method and solid state diffusion. Aldo-keto method implied to decrease the processing time and heating temperature. The red-orange emitting phosphor was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as emission and excitation photoluminescence spectra re-corded at room temperature. The result of aldo-keto method showed that the phosphor YBO3:Eu3+could be obtained at 900 °C in less time~60%as compared to solid state diffusion (SSD). The material showed that the strongest emission peak at 595 nm under excitation at 233 nm was only due to forced magnetic dipole 5D0→7F1 transition of Eu3+ions. Significantly, the emission inten-sity of YBO3:Eu3+phosphor prepared by aldo-keto method was relatively higher as compared to that obtained by the solid state diffusion. 11-2788/TF aldo-keto method; yttria; europium; optical materials; photoluminescence (PL); rare earths K.A. Koparkar,N.S. Bajaj,S.K. Omanwar |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(14)60445-2 |