Preparation of Cathode Material for Co-Sintering with Electrolyte at High Temperature

Ti-doped La-Sr-Co-Fe-based oxides (LSTCFs) were prepared as cathode material for co-sintering with electrolyte at high temperatures. LSTCFs have relatively high solid solubility limits of Ti up to 80mol%. Before reaching the solubility limits, LSTCFs were well densified and single phase with a rhomb...

Full description

Saved in:
Bibliographic Details
Published inECS transactions Vol. 57; no. 1; pp. 1901 - 1908
Main Authors Kon, Toshiki, Kamegawa, Atunori, Takamura, Hitoshi
Format Journal Article
LanguageEnglish
Published The Electrochemical Society, Inc 01.01.2013
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ti-doped La-Sr-Co-Fe-based oxides (LSTCFs) were prepared as cathode material for co-sintering with electrolyte at high temperatures. LSTCFs have relatively high solid solubility limits of Ti up to 80mol%. Before reaching the solubility limits, LSTCFs were well densified and single phase with a rhombohedral structure (R-3c). Meanwhile, after exceeding the solubility limits, a Ti-rich secondary phase appeared and microstructures tend to be porous. Electrical conductivity and thermal expansion coefficient (TEC) for LSTCF decreased with increasing Ti content. Ti4+appears to work as a donor and suppress electronic spin state transition of Co3+ ions and formation of oxygen vacancies. The composition, such as La0.6Sr0.4Ti0.4(Co0.2Fe0.8)0.6O3-δ (LSTCF28) with 40 mol%Ti and La0.6Sr0.4Ti0.6(Co0.8Fe0.2)0.4O3-δ (LSTCF82) with 60 mol%Ti, showed low sinterability and sufficient thermomechanical compatibility with GDC electrolyte. Those, however, possess more than two order of magnitude lower electrical conductivity than those of typical cathode materials.
ISSN:1938-5862
1938-6737
DOI:10.1149/05701.1901ecst