Derived equivalence, recollements under $ H $-Galois extensions

In this paper, assume that $ H $ is a Hopf algebra and $ A/B $ is an $ H $-Galois extension. Firstly, by introducing the concept of an $ H $-stable tilting complex $ T_{\bullet} $ over $ B $, we show that $ T_{\bullet}\otimes_BA $ is a tilting complex over $ A $ and a derived equivalence between two...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 2; pp. 3210 - 3225
Main Authors Dong, Jinlei, Li, Fang, Sun, Longgang
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2023165

Cover

Abstract In this paper, assume that $ H $ is a Hopf algebra and $ A/B $ is an $ H $-Galois extension. Firstly, by introducing the concept of an $ H $-stable tilting complex $ T_{\bullet} $ over $ B $, we show that $ T_{\bullet}\otimes_BA $ is a tilting complex over $ A $ and a derived equivalence between two $ H $-module algebras can be extended to smash product algebras under some conditions. Then we observe that $ 0\rightarrow {\rm End}_{\mathcal{D}^b(B)}(T_{\bullet})\rightarrow {\rm End}_{\mathcal{D}^b(A)}(T_{\bullet}\otimes_BA) $ is an $ H $-Galois Frobenius extension if $ A/B $ is an $ H $-Galois Frobenius extension. Finally, for any perfect recollement of derived categories of $ H $-module algebras, we apply the above results to construct a perfect recollement of derived categories of their smash product algebras and generalize it to $ n $-recollements.
AbstractList In this paper, assume that $ H $ is a Hopf algebra and $ A/B $ is an $ H $-Galois extension. Firstly, by introducing the concept of an $ H $-stable tilting complex $ T_{\bullet} $ over $ B $, we show that $ T_{\bullet}\otimes_BA $ is a tilting complex over $ A $ and a derived equivalence between two $ H $-module algebras can be extended to smash product algebras under some conditions. Then we observe that $ 0\rightarrow {\rm End}_{\mathcal{D}^b(B)}(T_{\bullet})\rightarrow {\rm End}_{\mathcal{D}^b(A)}(T_{\bullet}\otimes_BA) $ is an $ H $-Galois Frobenius extension if $ A/B $ is an $ H $-Galois Frobenius extension. Finally, for any perfect recollement of derived categories of $ H $-module algebras, we apply the above results to construct a perfect recollement of derived categories of their smash product algebras and generalize it to $ n $-recollements.
Author Dong, Jinlei
Li, Fang
Sun, Longgang
Author_xml – sequence: 1
  givenname: Jinlei
  surname: Dong
  fullname: Dong, Jinlei
– sequence: 2
  givenname: Fang
  surname: Li
  fullname: Li, Fang
– sequence: 3
  givenname: Longgang
  surname: Sun
  fullname: Sun, Longgang
BookMark eNpNkE1PAjEURRuDiYjs_AGzYMlgv2amXRmDCiQkbnTddNpXLRlabQei_14QY1y9m7c49-ZcokGIARC6JnjGJOM3W92_zSimjNTVGRpS3rCylkIM_uULNM55gzGmhHLa8CG6vYfk92AL-Nj5ve4gGJgWCUzsOthC6HOxCxZSMSmWxaRc6C76XMBnDyH7GPIVOne6yzD-vSP08vjwPF-W66fFan63Lg2tq760tK1tbVppaaUPzU2rW05k3cjDCi3BEMwFBXCatUY3FhznkgAVriXWcclGaHXi2qg36j35rU5fKmqvfh4xvSqdem86UAakawU3mLCKC8ckt8JwQzGhEqzQB9b0xDIp5pzA_fEIVkeX6uhS_bpk33RAaNI
Cites_doi 10.1016/0021-8693(91)90313-W
10.1080/00927879208824439
10.1112/jlms/s2-43.1.37
10.1007/BF01161413
10.1016/0022-4049(94)00076-U
10.1016/j.jalgebra.2007.02.033
10.1090/S0002-9939-98-04210-5
10.1007/s10468-008-9098-1
10.1007/BF02764620
10.1016/0022-4049(94)00145-6
10.1515/crll.1988.391.85
10.1016/j.jalgebra.2013.09.018
10.1016/S0021-8693(03)00124-8
10.1007/s10468-015-9578-z
10.1017/CBO9780511629228
10.1112/jlms/s2-39.3.436
10.1080/00927879808826219
10.1080/00927879808826159
10.1090/cbms/082
10.1080/00927878508823223
10.1016/0021-8693(86)90159-6
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2023165
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 3225
ExternalDocumentID oai_doaj_org_article_ce9fb84c013548f394d8c4c20129ed8a
10_3934_math_2023165
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c265t-d2b6d6cb9d25a4277bab419679274a9ec10482eefa3bca7def4491e28fb1df493
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:29:13 EDT 2025
Tue Jul 01 03:56:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-d2b6d6cb9d25a4277bab419679274a9ec10482eefa3bca7def4491e28fb1df493
OpenAccessLink https://doaj.org/article/ce9fb84c013548f394d8c4c20129ed8a
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_ce9fb84c013548f394d8c4c20129ed8a
crossref_primary_10_3934_math_2023165
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023165-10
key-10.3934/math.2023165-21
key-10.3934/math.2023165-11
key-10.3934/math.2023165-22
key-10.3934/math.2023165-20
key-10.3934/math.2023165-14
key-10.3934/math.2023165-15
key-10.3934/math.2023165-1
key-10.3934/math.2023165-12
key-10.3934/math.2023165-23
key-10.3934/math.2023165-2
key-10.3934/math.2023165-13
key-10.3934/math.2023165-3
key-10.3934/math.2023165-4
key-10.3934/math.2023165-5
key-10.3934/math.2023165-6
key-10.3934/math.2023165-7
key-10.3934/math.2023165-8
key-10.3934/math.2023165-9
key-10.3934/math.2023165-18
key-10.3934/math.2023165-19
key-10.3934/math.2023165-16
key-10.3934/math.2023165-17
References_xml – ident: key-10.3934/math.2023165-5
  doi: 10.1016/0021-8693(91)90313-W
– ident: key-10.3934/math.2023165-21
  doi: 10.1080/00927879208824439
– ident: key-10.3934/math.2023165-7
  doi: 10.1112/jlms/s2-43.1.37
– ident: key-10.3934/math.2023165-10
– ident: key-10.3934/math.2023165-18
  doi: 10.1007/BF01161413
– ident: key-10.3934/math.2023165-19
  doi: 10.1016/0022-4049(94)00076-U
– ident: key-10.3934/math.2023165-9
  doi: 10.1016/j.jalgebra.2007.02.033
– ident: key-10.3934/math.2023165-23
  doi: 10.1090/S0002-9939-98-04210-5
– ident: key-10.3934/math.2023165-14
– ident: key-10.3934/math.2023165-15
  doi: 10.1007/s10468-008-9098-1
– ident: key-10.3934/math.2023165-17
  doi: 10.1007/BF02764620
– ident: key-10.3934/math.2023165-4
  doi: 10.1016/0022-4049(94)00145-6
– ident: key-10.3934/math.2023165-11
  doi: 10.1515/crll.1988.391.85
– ident: key-10.3934/math.2023165-12
  doi: 10.1016/j.jalgebra.2013.09.018
– ident: key-10.3934/math.2023165-16
  doi: 10.1016/S0021-8693(03)00124-8
– ident: key-10.3934/math.2023165-22
  doi: 10.1007/s10468-015-9578-z
– ident: key-10.3934/math.2023165-20
  doi: 10.1017/CBO9780511629228
– ident: key-10.3934/math.2023165-1
  doi: 10.1112/jlms/s2-39.3.436
– ident: key-10.3934/math.2023165-2
  doi: 10.1080/00927879808826219
– ident: key-10.3934/math.2023165-8
  doi: 10.1080/00927879808826159
– ident: key-10.3934/math.2023165-13
  doi: 10.1090/cbms/082
– ident: key-10.3934/math.2023165-3
  doi: 10.1080/00927878508823223
– ident: key-10.3934/math.2023165-6
  doi: 10.1016/0021-8693(86)90159-6
SSID ssj0002124274
Score 2.2064002
Snippet In this paper, assume that $ H $ is a Hopf algebra and $ A/B $ is an $ H $-Galois extension. Firstly, by introducing the concept of an $ H $-stable tilting...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 3210
SubjectTerms h-frobenius extension
h-galois extension
recollement
tilting complex
Title Derived equivalence, recollements under $ H $-Galois extensions
URI https://doaj.org/article/ce9fb84c013548f394d8c4c20129ed8a
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gAbVhvHiWMx8SoVUpmo1C3yU6pUtdCk_H7u4lBlY2GNouhyZ9993-XymZAbVKULqYTsZ5RmQnLNTGI8kxrKAyLYxGMfcvKej6fibZbNOkd94UxYlAeOjhtYr4IphAWoAuA6pEq4wgrLsYHiXdFAo6EadsgU5mBIyAL4Vpx0T1UqBoD_8NsDwBmsI50a1JHqb2rK6IDst2CQPkQjDsmOXx6RvclWSbU6JvfPsES-vaP-azOHVYEb8Y4ijV3Ewe-K4m9gazpmr3qxmle0aWtjD6w6IdPRy8fTmLUHHjDL86xmjpvc5dYoxzMN9kujjYAtIhW8i1beAncquPdBp8Zq6XwQQiWeF8EkLgiVnpLecrX0Z4RmBcRAJRbQnBPWGWMBOjngKggZpMr65PbXBeVn1LUogQ-gq0p0Vdm6qk8e0T_be1CNurkAMSrbGJV_xej8Px5yQXbRptj-uCS9er3xVwAIanPdxP4HgTuzpQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Derived+equivalence%2C+recollements+under+%24+H+%24-Galois+extensions&rft.jtitle=AIMS+mathematics&rft.au=Dong%2C+Jinlei&rft.au=Li%2C+Fang&rft.au=Sun%2C+Longgang&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=2&rft.spage=3210&rft.epage=3225&rft_id=info:doi/10.3934%2Fmath.2023165&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon