Derived equivalence, recollements under $ H $-Galois extensions
In this paper, assume that $ H $ is a Hopf algebra and $ A/B $ is an $ H $-Galois extension. Firstly, by introducing the concept of an $ H $-stable tilting complex $ T_{\bullet} $ over $ B $, we show that $ T_{\bullet}\otimes_BA $ is a tilting complex over $ A $ and a derived equivalence between two...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 2; pp. 3210 - 3225 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2023165 |
Cover
Abstract | In this paper, assume that $ H $ is a Hopf algebra and $ A/B $ is an $ H $-Galois extension. Firstly, by introducing the concept of an $ H $-stable tilting complex $ T_{\bullet} $ over $ B $, we show that $ T_{\bullet}\otimes_BA $ is a tilting complex over $ A $ and a derived equivalence between two $ H $-module algebras can be extended to smash product algebras under some conditions. Then we observe that $ 0\rightarrow {\rm End}_{\mathcal{D}^b(B)}(T_{\bullet})\rightarrow {\rm End}_{\mathcal{D}^b(A)}(T_{\bullet}\otimes_BA) $ is an $ H $-Galois Frobenius extension if $ A/B $ is an $ H $-Galois Frobenius extension. Finally, for any perfect recollement of derived categories of $ H $-module algebras, we apply the above results to construct a perfect recollement of derived categories of their smash product algebras and generalize it to $ n $-recollements. |
---|---|
AbstractList | In this paper, assume that $ H $ is a Hopf algebra and $ A/B $ is an $ H $-Galois extension. Firstly, by introducing the concept of an $ H $-stable tilting complex $ T_{\bullet} $ over $ B $, we show that $ T_{\bullet}\otimes_BA $ is a tilting complex over $ A $ and a derived equivalence between two $ H $-module algebras can be extended to smash product algebras under some conditions. Then we observe that $ 0\rightarrow {\rm End}_{\mathcal{D}^b(B)}(T_{\bullet})\rightarrow {\rm End}_{\mathcal{D}^b(A)}(T_{\bullet}\otimes_BA) $ is an $ H $-Galois Frobenius extension if $ A/B $ is an $ H $-Galois Frobenius extension. Finally, for any perfect recollement of derived categories of $ H $-module algebras, we apply the above results to construct a perfect recollement of derived categories of their smash product algebras and generalize it to $ n $-recollements. |
Author | Dong, Jinlei Li, Fang Sun, Longgang |
Author_xml | – sequence: 1 givenname: Jinlei surname: Dong fullname: Dong, Jinlei – sequence: 2 givenname: Fang surname: Li fullname: Li, Fang – sequence: 3 givenname: Longgang surname: Sun fullname: Sun, Longgang |
BookMark | eNpNkE1PAjEURRuDiYjs_AGzYMlgv2amXRmDCiQkbnTddNpXLRlabQei_14QY1y9m7c49-ZcokGIARC6JnjGJOM3W92_zSimjNTVGRpS3rCylkIM_uULNM55gzGmhHLa8CG6vYfk92AL-Nj5ve4gGJgWCUzsOthC6HOxCxZSMSmWxaRc6C76XMBnDyH7GPIVOne6yzD-vSP08vjwPF-W66fFan63Lg2tq760tK1tbVppaaUPzU2rW05k3cjDCi3BEMwFBXCatUY3FhznkgAVriXWcclGaHXi2qg36j35rU5fKmqvfh4xvSqdem86UAakawU3mLCKC8ckt8JwQzGhEqzQB9b0xDIp5pzA_fEIVkeX6uhS_bpk33RAaNI |
Cites_doi | 10.1016/0021-8693(91)90313-W 10.1080/00927879208824439 10.1112/jlms/s2-43.1.37 10.1007/BF01161413 10.1016/0022-4049(94)00076-U 10.1016/j.jalgebra.2007.02.033 10.1090/S0002-9939-98-04210-5 10.1007/s10468-008-9098-1 10.1007/BF02764620 10.1016/0022-4049(94)00145-6 10.1515/crll.1988.391.85 10.1016/j.jalgebra.2013.09.018 10.1016/S0021-8693(03)00124-8 10.1007/s10468-015-9578-z 10.1017/CBO9780511629228 10.1112/jlms/s2-39.3.436 10.1080/00927879808826219 10.1080/00927879808826159 10.1090/cbms/082 10.1080/00927878508823223 10.1016/0021-8693(86)90159-6 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2023165 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 3225 |
ExternalDocumentID | oai_doaj_org_article_ce9fb84c013548f394d8c4c20129ed8a 10_3934_math_2023165 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c265t-d2b6d6cb9d25a4277bab419679274a9ec10482eefa3bca7def4491e28fb1df493 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:29:13 EDT 2025 Tue Jul 01 03:56:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-d2b6d6cb9d25a4277bab419679274a9ec10482eefa3bca7def4491e28fb1df493 |
OpenAccessLink | https://doaj.org/article/ce9fb84c013548f394d8c4c20129ed8a |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ce9fb84c013548f394d8c4c20129ed8a crossref_primary_10_3934_math_2023165 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023165-10 key-10.3934/math.2023165-21 key-10.3934/math.2023165-11 key-10.3934/math.2023165-22 key-10.3934/math.2023165-20 key-10.3934/math.2023165-14 key-10.3934/math.2023165-15 key-10.3934/math.2023165-1 key-10.3934/math.2023165-12 key-10.3934/math.2023165-23 key-10.3934/math.2023165-2 key-10.3934/math.2023165-13 key-10.3934/math.2023165-3 key-10.3934/math.2023165-4 key-10.3934/math.2023165-5 key-10.3934/math.2023165-6 key-10.3934/math.2023165-7 key-10.3934/math.2023165-8 key-10.3934/math.2023165-9 key-10.3934/math.2023165-18 key-10.3934/math.2023165-19 key-10.3934/math.2023165-16 key-10.3934/math.2023165-17 |
References_xml | – ident: key-10.3934/math.2023165-5 doi: 10.1016/0021-8693(91)90313-W – ident: key-10.3934/math.2023165-21 doi: 10.1080/00927879208824439 – ident: key-10.3934/math.2023165-7 doi: 10.1112/jlms/s2-43.1.37 – ident: key-10.3934/math.2023165-10 – ident: key-10.3934/math.2023165-18 doi: 10.1007/BF01161413 – ident: key-10.3934/math.2023165-19 doi: 10.1016/0022-4049(94)00076-U – ident: key-10.3934/math.2023165-9 doi: 10.1016/j.jalgebra.2007.02.033 – ident: key-10.3934/math.2023165-23 doi: 10.1090/S0002-9939-98-04210-5 – ident: key-10.3934/math.2023165-14 – ident: key-10.3934/math.2023165-15 doi: 10.1007/s10468-008-9098-1 – ident: key-10.3934/math.2023165-17 doi: 10.1007/BF02764620 – ident: key-10.3934/math.2023165-4 doi: 10.1016/0022-4049(94)00145-6 – ident: key-10.3934/math.2023165-11 doi: 10.1515/crll.1988.391.85 – ident: key-10.3934/math.2023165-12 doi: 10.1016/j.jalgebra.2013.09.018 – ident: key-10.3934/math.2023165-16 doi: 10.1016/S0021-8693(03)00124-8 – ident: key-10.3934/math.2023165-22 doi: 10.1007/s10468-015-9578-z – ident: key-10.3934/math.2023165-20 doi: 10.1017/CBO9780511629228 – ident: key-10.3934/math.2023165-1 doi: 10.1112/jlms/s2-39.3.436 – ident: key-10.3934/math.2023165-2 doi: 10.1080/00927879808826219 – ident: key-10.3934/math.2023165-8 doi: 10.1080/00927879808826159 – ident: key-10.3934/math.2023165-13 doi: 10.1090/cbms/082 – ident: key-10.3934/math.2023165-3 doi: 10.1080/00927878508823223 – ident: key-10.3934/math.2023165-6 doi: 10.1016/0021-8693(86)90159-6 |
SSID | ssj0002124274 |
Score | 2.2064002 |
Snippet | In this paper, assume that $ H $ is a Hopf algebra and $ A/B $ is an $ H $-Galois extension. Firstly, by introducing the concept of an $ H $-stable tilting... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 3210 |
SubjectTerms | h-frobenius extension h-galois extension recollement tilting complex |
Title | Derived equivalence, recollements under $ H $-Galois extensions |
URI | https://doaj.org/article/ce9fb84c013548f394d8c4c20129ed8a |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gAbVhvHiWMx8SoVUpmo1C3yU6pUtdCk_H7u4lBlY2GNouhyZ9993-XymZAbVKULqYTsZ5RmQnLNTGI8kxrKAyLYxGMfcvKej6fibZbNOkd94UxYlAeOjhtYr4IphAWoAuA6pEq4wgrLsYHiXdFAo6EadsgU5mBIyAL4Vpx0T1UqBoD_8NsDwBmsI50a1JHqb2rK6IDst2CQPkQjDsmOXx6RvclWSbU6JvfPsES-vaP-azOHVYEb8Y4ijV3Ewe-K4m9gazpmr3qxmle0aWtjD6w6IdPRy8fTmLUHHjDL86xmjpvc5dYoxzMN9kujjYAtIhW8i1beAncquPdBp8Zq6XwQQiWeF8EkLgiVnpLecrX0Z4RmBcRAJRbQnBPWGWMBOjngKggZpMr65PbXBeVn1LUogQ-gq0p0Vdm6qk8e0T_be1CNurkAMSrbGJV_xej8Px5yQXbRptj-uCS9er3xVwAIanPdxP4HgTuzpQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Derived+equivalence%2C+recollements+under+%24+H+%24-Galois+extensions&rft.jtitle=AIMS+mathematics&rft.au=Dong%2C+Jinlei&rft.au=Li%2C+Fang&rft.au=Sun%2C+Longgang&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=2&rft.spage=3210&rft.epage=3225&rft_id=info:doi/10.3934%2Fmath.2023165&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023165 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |